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A brief description of the two kinds of buckling, collapse and bifurcatio'i,
is first given, This followed by a simple mathematical example involving a
shallow truss, which displays most of the phenomena to be illustrated later with
thin shells. Many examples of classical buckling of uniformly loaded cylindrical

and spherical shells are then shown, with comparisons between test and theory to
emphasize the sensitivity of these buckling loads to initial imperfections.
Illustrations are presented in which the cause of failure is nonlinear collapse
due either to large deflections or to both large deflections and nonlinear ma-
terial behavior., A major section follows in which are given examples of axisy-
nmmetric shells that fail by bifurcation buckling. In these examples nonuniformit
or nonlinearity of the prebuckling behavior is significant. The effects of
boundary conditions and eccentric loading on bifurcation buckling of shells of
revolution are demonstrated, with emphasis on buckling of monocoque or stiffened
shells under uniform external pressure and axial compression. In the following
section interaction curves are given for monocoque cylinders under combined axial
compression and internal or external pressure corresponding to various boundary
conditions. Interaction curves are also presented for ring-stiffened cylinders
and aigle-ply laminated cylinders. Examples of buckling of nonuniformly loaded

" shells, with thermal as well as mechanical loading, are then presented, including
cylindrical and conical shells heated along narrow axial strips. Buckling of ring
stiffened cylinders is illustrated by a variety of examples that demonstrate dis-
"crete vs. smeared ring models, the effects of residual stresses and deformations
due to welding and cold bending, and the influence of ring web flexibility on
buckling load predictions. Buckling of prismatic structures suoq as oval cyliinder
and panels is treated next. Included are descriptions of modal interaction in
panels built up of thin sections and demonstrations of local cross section defor-
"mation in the bifurcation buckling modes corresponding to general instability.
The following section focuses on the sensitivity of predicted buckling loads to
initial geometrical imperfections. Koiter's asymptotic theory of initial post-
bifurcation behavior is summarized and several examples are given in which use of
this and other nonlinear models of post-bifurcation behavior lead to predictions
of failure loads of imperfect shell structures. The volume closes with a chapter
on axisymmetric collapse and bifurcation buckling of bodies of revolution that
consist of combinations of thin shell segments and solid segments to which shell
theory cannot be applied with sufficient accuracy.
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SECTION 1

DESCRIPTIONS OF TYPES OF INSTABILITY

AND CLASSICAL BUCKLING PROBLEMS

". Introduction

To the layman, buckling is a mysterious, perhaps even awe-inspiring phenomenon

'- that transforms objects originally imbued with symmetrical beauty into junk

(Fig. 1). Occasionally unaware of the possibility of buckling, engineers

have designed structures (Fig. 2(a)) with inadequate safety margins (Fig.

2(b)). The large cylindrical tower or the left in Fig. 3(a) failed in

1956 [4.1] because of buckling of a torispherical end closure at its lower

*:.% end. The 38-meter-tall water tower sketched in Fig. 4(c) collapsed in 1972[ 2]

when it was being filled for the first ti--. The collapse of the entire tower

(Fig. 4.4(a)) was triggered by local instability in the conical section at

the deepest water level (Fig. 4(b)). A largr expensi- e shroud for a pay-

load to be orbited around the earth (Fig. 5(a)) failed during proof test-

ing because of local buckling near a field joint (Fig. 5(b, c)) 1 3].

The purpose of this volume is to remove some of the mystery associated with

buckling of thin shells by showing many examples of its occurrence and ex-

plaining its cause. Perhaps the material presented here will help to prevent

future disasters of the type just illustrated.
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Summary of the Volume

Section 1 contains a brief description of two kinds of buckling, c ,l!pse

and bifrucation, followed by a simple mathematical example involvaig a

shallow truss, which displays most of the phenomena to be illustrated

later with thin shells. Many examples of classical buckling of uni-

- - formly loaded cylindrical and spherical shells are then shown, wit' corn-

parisons between test and theory to emphasize imperfections.

Section 2 concerns shell structures in which the cause of failure is non-

linear collapse due to either large deflections or to both large deflections

anc nonlinear material behavior. In certain of the cases the predicted

nonlinear load is compared to a critical load calculated from a linearized

bifurcotion buckling model. Included in Section 2 are descriptions of

elastic-plastic collapse of cylindrical shells subjected to uniform axial

compression or external pressure, elastic-plastic collapse of straight and

curved pipes subjected to external pressure and bending, elastic collapse of

shallow spherical caps under external pressure and elastic collapse of

"cylindrical panels and shells under combined axial compression and concen-

"trated loads. Section 2 closes with descriptions of collapse fai ure of

* axially compressed cylinders with cutouts, noncircular cylinders, and

cylinders with local axisymmetric load path eccentricity.

°- %
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Section 3 gives examples of axisymmetric shells in which fai!,hre

is due to bifurcation buckling. In all of the examples nonuniformity or non-

linearity of the prebuckling behavior is important. Several illustrations

are provided of bifurcation buck!.Ln- due to local edge effects and local

hoop compression. These are followed by numerous examples in which the pre-

buckled state is characterized by meridional tension combined with hoop com-

pression. Bifurcation buckling of internally pressurized torispherical shells,

both in the elastic and in the plastic range of material behavior, is de-

scribed in detail. The section closes with an example in which bifurcation

buckling anl axisymmetric collapse occur almost simultaneously.

Section 4 provides examples that illustrate the effects of bound-

ary conditions and eccentric loading on bifurcation buckling of shells of

revolution. The emphasis is on buckling of monocoque and stiffened cylindri-

cal shells under uniform external pressure and axial compression. Examples

are also given of inextensional buckling modes, which are associated with

very low critical loads; of change in effective "boundary" condition due to

development of a plastic region in the prebuckling phase; and dependence of the

buckling load on small inward and outward axisymmetric imperfections of an

axially compressed stringer-stiffened short cylindrical shell.

Section 5 is devoted to combined loading of cylindrical shells and

nonsymmetric loadinrq of shells of revolution. Interaction curves are given

for monocoque cylinders under combined axial compression and internal or ex-0
ternal pressure corresponding to various boundary conditions. Post-buckling

configurations are shown for either axial compression or torsion combined

with internal pressure. Interaction curves are also presented for ring or

stringer-stiffened cylinders and angle-ply laminated cylinders. Examples of

3



-O"F.' nonsymmetrically loaded shells of revolution include buckling of a payload

shroud such as that shown in Fig. 5(a) due to nons~mmetric pressure,

buckling of a ring-stiffened cylinder under combine-i bending and nonuniform

heating, buckling of cylindrical and conical shells heated along narrow axial

strips, and buckling of a steel containment vessel due to compressive

stresses generated by vertical and horizontal components of ground accelera-

tion during an earthquaake.

Section 6 is on bifurcation buckling and collapse of ring-stiffeied

shells with emphasis given to cylindrical shells. The section begins with an

illustration of the effect of discrete rings on the prebuckling state and

"* -, general instability bifurcation buckling mode. Comparisons between test and

theory are given for elastic buckling of machined specimens in a study in

which the effect of axial restraint at the boundaries is investigated.

• -Elastic-plastic buckling of a series of steel specimers is then described,

followed by an example of a titanium shell which is predicted to fail by non-

synmietric bifurcation buckling when creep is neglected and by axisymmetric

collapse when creep is included in the analysis. The effect on predicted

buckling loads of initial imperfections and residual stresses due to weld

shrinkage at stations where discrete rings are attached to a shell is illus-

trated for an ellipsoidal shell subjected to hydrostatic compression. The

0 .combined effects on failure of cold bending an initially flat sheet into

a cylindrical shell and subsequently welding ring stiffeners to it areI-..-; described. The section closes with a number of examples showing the impor-

tance in certain cases of treating discrete ring webs as flexible shell

branches in analytical models for prediction of axisymmetric collapse and

nonsymmetric bifurcation buckling.

F--'
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O Section 7 contains several illustrations of buckling of prismatic

"shells and panels, that is, structures that have a cross section that is

constant in one of the coord.nate directions. Included are descriptions of

modal interaction in panels built up of thin sect.Lons and demonstrations of

"- local cross section deformation in the bifurcation buckling modes of ini-

tially perfect panels. Predicted bifurcation buckling modes are shown for

noncircular cylinders under axial compression and comparisons between test

and theory are given for oval cylinders under external pressure. The sec-

.- tion closes with brief discussions of the effect of transverse shear deforma-

tion on the buckling of composite plates and on the usefulness of the South-

well plot for prediction of instability failure.

* Section 8 focuses on the sensitivity of predicted buckling loads

to initial geometrical imperfections. The section opens with a chart of empiri-

* . cal knockdown factors for monocoque cylinders subjected to axial compression

and a review of various types of pre- and post-buckling load deflection curves.

"-.r. The Koiter theory is briefly summarized and imperfection sensitivity factors

"for various systems are plotted. A design method for other than monocoque

shells is outlined and illustrated for cylinders with combined axial compres-

sion and internal pressure. Charts are given that show typical measured im-

perfections in small laboratory models and a large industrial ring and

* stringer stiffened shell. Buckling interaction curves for a laminated

cylindrical shell are plotted and compared to test results on an imperfect

specimen. The section closes with several examples in which bifurcation

* buckling is stable and the structures carry increasing loads far into the

- -post-buckling regime.

5
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"°O Section 9 demonstrates axisymmetric collapse and bifurcation buck-

ling of bodies of revolution that consist of combinations of thin shell seg-

ments and solid segments to which shell theory cannot be applied with suf-

ficient accuracy.. An example is given of buckling of a hydrostatically

• "compressed ring-stiffened cylinder in which the rings and portions of shell

". to which the rings are attached are modeled as solid regions with use of

isoparametric quadrilaterals of revolution and the rest of the cylinder is

modeled as a series of thin shell segments. Other examples include buckling

of a spherical shell embedded in a softer elastic material and collapse of

a ccmplex cylinder-cone combination containing a frangible joint. The region

in the immediate neighborhoods of notches in the frang'ble joint are modeled

with use of solid elements.

Purpose

The purpose of the many examples presented here is to give the reader a physi-

cal "feel" for shell buckling. With such knowledge the engineer will have an

enhanced ability to foresee situations in which buckling might occur and to

modify a design to avoid it. He will be able to set up more appropriate

models for tests and analytical predictions, including failure due to buck-

ling. The emphasis in this chapter is not on the development of equations

for prediction of instability. For such material the reader is referred to

the book by Brush and Almroth [ 4] and the material in Ref.[430].

Throughout the text numbers in square brackets [ ] refer to references

listed at the end of the text.

6



Why Do Shells Buckle?

The property of thinness of a shell wall has a consequence that has been

pointed out in Ref. [430]: The membrane stiffness is in general several

orders of magnitude greater than the bending stiffness. A thin shell can

[- absorb a great deal of membrane strain energy without deforming too much.

It must deform much more in order to absorb an equivalent amount of bending

strain energy. If the shell is loaded in such a way that most of its strain

energy is in the form of membrane compression, and if there is a way that

this stored-up membrane energy can be converted into bending energy, the

"shell may fail rather dramatically in a process called "buckling," as it

exchanges its membrane energy for bending energy. Very large deflections

are generally required to convert a given amount of membrane energy into

bending energy.

The way in which buckling occurs depends on how the shell is loaded and on

its geometrical and material prop t-ies. The prebuckling process is often

nonlinear if there is a reasonably large percentage of bending energy being

stored in the shell throughout the loading history. Two types of buckling

"exist: nonlinear collapse and bifurcation buckling. Nonlinear collapse is

predicted by means of a nonlinear stress analysis. The s.i-tfness of the

structure, or the slope of the load-deflection curve, decreases with increas-

"ing load. At the collapse load the load-deflection curve has zero slope and,

"if the load is maintained as the structure defcrms, failure of the structure

is usually dramatic and almost instantaneous. This type of instability fail-

ure is often called "snap-through," a nomenclature derived from the many early

tests and theoretical models of shallow arches and spherical caps under

7
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t0.unifornly distributed loads. These very nonlinear systems initially deform

slowly with increasing load. As the load approaches the maximum value, the

rate of deformation increases until, reaching a status of neutral equilibrium

in which the average curvature is almost zero, the shallow arches and caps

subsequently, "snap through" to a posc-buckled state which resembles the

original structure in an inverted form.

The term "bifurcation buckling" refers to a different kind of failure, the

onset of which is predicted by means of an eigenvalue analysis. At the buck-

ling load, or bifurcation point on the load-deflection path, the deformations

begin to grow in a new pattern which is quite different fa m the prebuckling

* pattern. Failure, or unbounded growth of this new deflection mode, occurs

if the postbifurcation load-deflection curve has a negative slope and the

applied load is independent of the deformation amplitude.

What is Buckling?

To most laymen the word "buckling" evokes an image of failure of a structure

which has been compressed in some way. Pictures and perhaps sounds come to

mind of sudden, catastrophic collapse involving very large deformations.

* From a scientific and engineering point of view, however, the interesting

phases of buckling phenomena generally occur before the deformations are

"- very large when, to the unaided eye, the structure appears to be unde-ormed

"* or only slightly deformed.

%7-".5.
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"* To reiterate and enlarge upon what was written above, in the static anE '-

sis of perfect btructures, the two phenomena loosely termed "buckling" aY2

collapse at tne maximum point in a load vs. deflection curve and bifurcation

buckling. These two types of instability failure are illustzated in Figs.

6 and 7. The axially compressed cylinder shown in Fig. 6 deforms

approximately axisymmetrically along the equilibrium path OA until a maxi-

mum or limit load ' is reached at point A. If the axial load X. is not

sufficiently relieved Ly the reduction in axial stiffness, the perfect

cylinder will fail at this limit load, following either the path ABC along

which it continues to deform axisymmetrically, or some other path ABD

along which it first deforms axisyrmmetrically from A to B and then

nonaxisymmetrically from B to D. Limit point buckling, or "snap-through"

* occurs at paint A and bifurcation buckling at point B. The equilibrium

path OABC , corresponding to the axisymmetrical mode of deformation, is called the

fundamental or primary or prebuckling path and the postbifurcation equilibrium

path BD, corresponding to the nonaxisymmetrical mode of deformation is called the

secondary or post-buckling path. Buckling of either collapse or bifurcation

type may occur at loads for which some or all of the structural material

has been stressed beyond its proportional limit. The example in Fig. 6

is somewnat unusual in that the bifurcation point B is shown to occur

after the collapse point has been reached. In this particular case, there-

fore, bifurcation buckling is of less engineering significance than axi-

symmetric collapse.

" A commonly occurring situation is illustrated in Fig. 7(a). The

- bifurcation point B is between 0 and A. If the fundamental path OAC

corresponds to axisymmetrical deformation and BD to nonaxisymmetrical

* pdeformation, then initial failure of the structure would generally be charac-

•. 9
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terized by rapidly growing nonaxisymmetrical deformations. In this case

tht collapse load of the perfect structure X is of less engineering sig-
L

" nificance than the bifurcation point, C"mC

"In the case of real structures which contain unavoidable imperfections -here

"is no such thing as true bifurcation buckling. The actual structure will

follow a fundamental path OEF, with the failure corresponding to "snap-

through" at point E at the collapse load Xs. If point B in Fig. 7(a)

corresponds to bifurcation into a nonsymmetric bucklinq modL, the collapse

at E will involve significant nonsymmetric displacer.ent components. Al-

though true bifurcation buckling is fictitious, the bifurcation buckling

• analytical model is valid in that it is convenient and often leads to a good

* approximation of the actual failure load and mode.

Various Types of Bifurcation Buckling

... In Fig. 7(b) the load is plotted as a function of amplitude of the bifurca-

tion buckling node. Since the bifurcation buckling mode is orthogonal to

the prebuckling displacement pattern of the perfect shell, its amplitude

remains zero until the bifurcation point B is reached. The curve BD

in Fig. j (b) implies that the post-buckling state is unstable: the load

6" carrying capability X decreases with increasing amplitude of the bifurcation

F ;buckling mode.

All real structures are imperfect. The imperfection shape is, in general,

not orthoqonal to the bifurcation buckling mode. If one expressed the de-

formation of the imperfect structure as a sum of two components, the funda-

mental prebuckling equilibrium state of the perfect structure plus the bifur-

cation buckling mode of the perfect structure (presumed here to be unique),

10
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then one would obtain the curve OEF in Fig. 7(b)if one plotted the amplitude of the

', %bifurcation modal component vs. load for the imperfect structure. The amp-

litude of the bifurcation modal component would increase at an increasing

rate until instability via nonlinear "snap-through" or collapse would oc-

cur at the reduced load XS" The difference between the critical bifurca-

tion load AC of the perfect structure and the collapse load AS of the

imperfect structure depends on the amplitude of the initial imperfection

wbo. A chart of IS vs W would characterize the sensitivity of

S-he maximum load A to initial geometrical imperfections. According to
S

the jargon that has become accepted over the years, the structure to which

the curves in Fig. 7(b) correspond is called "imperfection sensitive"

because imperfections reduce its maximum load carrying capability. (Of

course, it is not the structure that is sensitive to imperfectioi.-, but

the maximum load it can safely support!)

-p',

Neither all -tructures nor mathematical models of them behave as shown in

Fig. 7(b). Figure 8 shows various types of post-buckling behavior. A

linearized model of elastic stability, that is an eigenvalue formulation of

the buckling problem, implies load-deflection behavior shown in Fig. 8(a):

The amplitude of the eigenvector, the bifurcation buckling mode, is in-

determinate, which implies that the load A remains constant A =XC with

* increasing deflections wb . The equilibrium path for the slightly imper-

fect structure follows the rectangular hyperbolic path,

Swb lwbo /(AA-l))

"shown dotted in Fig. 8(a).
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"If nonlinear post-buckling effects are accounted for, equilibrium paths for

.-.. , most structures have the forms shown in Fig. 8(b, c, d). The asymmetric

nature of the curves in Fig. 8(b) indicates that the -tructure continues

to carry loads above the bifurcation load A if it is forced to buckle one
C

4 way, but collapses if allowed to buckle the 'other. An example of this type

of behavior is a structure with parts that move relative to each other as

* buckling proceeds in such a way that these parts come in contact and support

each other for positive deflections but move away from each other forming

gaps for similar negative deflections. Specifically, a built-up panel con-

sisting of a flat sheet riveted to a corrugated sheet is such a structure.

Roorda [ 5] has demonstrated this asymmetric post-buckling behavior for per-

fect and imperfect frames with eccentric loads. His results are presented

in [ 4]. The symmetric stable post-buckling behavior displayed in Fig.8 (c)

is typical of axially compresses isotropic flat plates. The perfect plate

loaded precisely in its neutral surface buckles either way with equal ease

and the post-buckled equilibrium state is stable. The symmetric unstable

-o ost-buckling behavior shown in Fig. 8(d) is typical of the early post-

bifurcation regimes of axially compressed thin cylindrical shells and exter-

nally pressurized thin spherical shells.

* Capsule of Recent Progress in Buckling Analysis

"Recent progress in our capability to predict buckling failure can be categor-

"ized into three main areas:

41..
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(1) development of asymptotic post-buckling theories and applications

of these theories to specific classes of structures, such as simple Flates,

r .," shells, and panels [ 6 - 8];

(2) development of general-purpose computer programs for calculation

of static and dynamic behavior of structures including large deflections,

large strains, and nonlinear material effects 1 e - 10];

(3) development of special purpose computer programs for limit point

"axisymmetrical buckling and nonaxisymmetrical bifurcation bucklinj of axi--

symmetric structures [ 11 - 14]

Asymptotic Analysis: The asymptotic post-buckling analyses surveyed in

6 - 8] rest on theoretical foundations established by Koiter j15],

whose general elastic post-bifurcation theory leads to an expansicn for the

load parameter A in terms of the buckling modal amplitude wb which is

valid in the neighborhood of the critical bifurcation point in (A, w )

space. The primary aims of the asymptotic analyses are to calculate limit

loads for perfect and imperfect structures. These analyses have contributee
J -.

vital physical insights into the buckling process and the effectL of struv:-

% tural or loading imperfections on this process.

General Nonlinear Analysis: The general-purpose computer programs in wide-

spread use since the early 1970's and presently being written ar' based on

* principles of continuum mechanics established for the most part by rhe late

1950's and set forth in several texts [16 - 21]. The structural continuum

is discretized into finite elements as described in the texts [22 - 25] and

various strategies are employed to solve the resulting nonlinear problem

8]. The nonlinearity is due to moderately large or very large deflec-

13
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tions and nonlinear material behavior. Various plasticity models are described

in texts, conference proceedings, and survey articles identified in Ref. [ 8].

Additional papers on the formulation, discretization, and solution of non-

•**• 'linear structural probLems appear in many symposia proceedinqs, also iden-

"tified in Ref. [ 8]. The primary aim of this vast body of work, most of

which was done in the 1970's, has been to produce reliable analysis methods

and computer programs for use by engineers and designers. Thus, the empha-

sis in the literature just cited is not primarily on the acquisition of new

physical insight into buckling and post-bifurcation phenomena, but on the

"creation of tools that can be used to determine the equilibrium path OEF in

"- Fig. 7 (a)' for an arbitrary structure and on proof that these tools work

by use of demonstration problems, the solution of which is known. In most

cases, no formal distinction is made between prebifurcation and post-

bifurcation regimes; in facT, simple structur( te modeled with imperfec-

tions 9: that potential bifurcation points (such as B in Fig. 7 (a)) are

converted into limit points such as E. The buckling problem loses its

special qualities as illuminatea so skillfully in the asymptotic treat-

ments and becomes just another nonlinear analysis, requiring perhaps special

physical insight on the part of the computer program user because of poten-

.-. •. tial numerical traps such as bifurcation points and limit points.

. Figures 7 (a) and (b) illustrate the two very different approaches to the

buckling problem described in the last two paragraphs. In the general non-

-O. linear approach the computations involve essentially a "prebuckling" analysis,

or a determination of the unique equilibrium states along the fundamental

•.'..., path OEF in Fig. 7 (a). In the asymptotic approach, Fig. 7(b), the

14



prebuckling state is often k-iown a priori. The secondary path BD of the

perfect structure and (in the elastic case) the limit point E on the funda-

•'V mental path of the imperfect structure are determined by expansion of the

- solution in a power series of the bifurcation modal amplitude which is

asymptotically exact at the bifurcation point B.

"Axisymmetric Structures: The third approach to the buckling problem, develop-

ment of special-purpose programs for the analysis of axisymmetric structures,

forms a sort of middle ground between the asymptotic analysis and the

general-purpose nonlinear analysis. The approach is similar to the asymp-

totic treatment because in applications it is restricted to a special class

- - of structures and the distinction between prebuckling equilibrium and bifur-

'-.. cation buckling is retained. It is similar to the general nonlinear approach

in that the continuum is discretized and the nonlinear prebuckling equilib-

rium problem is solved by "brute force." The emphasis is on the calculation

of the prebuckling fundamental path, OB or OA in Fig. 7(a), and deter-

mination of the bifurcation point B and its associated buckling mode, not

on calculation of post-bifurcation behavior BD or of the load-deflection
N'."

path OEF of the imperfect structure. The goals of this third approach

are to create an analysis tool for use by engineers and designers and to

use this tool in extensive comparisons with tests both to verify it and to

obtain physical insight into the buckling process.

15
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Simple Examples to Illu-trate Various Types of Buckling

Column Buckling

In order to make the discussion of the basic concepts introduced in connec-

tion with Figs. 7 ard 8 less abstract, we will relate it to a simple two-

column structure that exhibits the types of behavior displayed in Fig. 8.

This example is from Ref. [4].

The behavior of a column under an axial load is governed by the equation

(see, for instance Ref.[26] )

EI-2 = P si ( 2)ýs 2

where s and 9 are defined in Fig. 9. For all values of P this equation

has the solution E, = 0, corresponding to unbuckled equilibrium. However,

for values of P > PM = EI(7T/L)2 a solution with 9 3 0 also exists. This

solution corresponds to equilibrium forms with a bent column and is illus-

trated in Fig. 9. In the plot, n represents the part of the column

shortening that is caused by the bending of the column. Hence, the equilib-

rium path corresponding to the first solution (straight column) is repre-

sented by the vertical axis. The Euler load P is the value of the axial load
CRO

at which the vertical axis is intersected by the post-buckling curve cor-

responding to the bent equilibrium form.

Figure 10 shows a structure consisting of two flexible bars or columns

subjected to a load P. Denoting the length of the deformed column by L'

we have

F 16



-N (L-L') - COS B/Cos ( ( 3)- .'• EA L

where B = arc sin (b/L) and N is the axial load in the columns, i.e.,

N = P/(2 sin 3). With

' = EI(TVL) 2 , p I/A(le/L) 2  ( 4)

we introduce

P* P/X and N* =N/A ( 5)

The relation between deformation 6/L and load P* is readily obtained

* in the parametric representation

-* 6/L = sin B - sin

S2 sin ( (1-cos B/cos () ( 6)
p

Prebuckling Solution or Fundamental Equilibrium Path: Numerical solutions

of Eq. ( 6) are shown in Fig. 11 fcr two different structures, both with

h/L = 0.1, one with p 2 x 10 and one with p = 4 x 10 . With increas-

ing load the stiffness Dp*/D6 decreases and at a deformation corresponding

"to 6/L = 0.04 (6/h = 0.4) a maximum occurs in each of the two load displace-

ment curves. We considp- the case in which P is a dead weight load. Then

* as the maximum is reached and the structure cannot carry additional load,

"-" it snaps into an inverted position su h that the two columns are subje -ted

. to tension. The curves in Fig. 11 labeled p = 2 x 10-4 and p = 4 x 10-4

• are analogous to the curve OAC in Fig. 7 (a).

Bifurcation Buckling: We notice, however, that if N* > 1, i.e., N > EI(7/L)2

then the colunuis will buckle. From the post-buckled load-deflection curve

17



'O for the column (Fig. 9) we see that for reasonably small buckling deflec-

tion the column deforms under constant load N* = 1. For all practical pur-

poses, then, we can assume that the axial load for the buckled column is

independent of the shortening and given by N* = 1. A secondary or post-

"buckled equilibrium form with slightly bent bars is represented by

2.*- tan B - AlbP*= 21/2

[1 - (tan B - 6/b)2]1/2

'.." This equilibrium form corresponds to N* = 1 and exists only for values of

6 larger than that for which buckling occurs

At the point of intersection between the fundamental equilibrium path

Eq. ( 6)and the secondary solution represented by Eq. ( 7), the columns

will begin to buckle. This occurs for the more slender columns,

-4"p = 2 x 10, at P* = 0.155. The load cannot be increased beyord this

value: The structure fails by bifurcation buckling with the columns tempor-

arily bending during the process. For the structure with p = 4 x 10-4

the point of intersection (bifurcation) occurs beyond the maximum in the

primary load displacement curve, indicating that the columns are straight

at the inception of snap through. The behavior represented by the curve

OA'B'D in Fig. 11 is analogous to that represented by the curve OABD

* in Fig. 6; the behavior represented by the curve OBD in Fig. 11 is

analogous to that represented by the curve OBD in Fig. 7(a).

* In bifurcation buckling analysis it is often assumed that nonlinearities and

geometrical changes in the prebuckling range can be omi tted. As the columns

N," . buckle at N* = 1, the critical load of the structure in such a model is

P* =2 sin B = 2h/L (4.8)

-18
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Figure 12 shows how the critical load of the two-column structure varies

with the parameter h/L. With h/L less than about 0.075 the structure will

collapse at the maximum in the load displacement curve - the columns are

straight as snap-through begins. With higher values of h/L the critical load

is represented by the curve marked "Bifurcation with Nonlinear Prebuckling."

For comparison, the critical load is also shown corresponding to the simpli-

fied analysis in which precritical deformations are omitted (Eq. ( 8)).

For larger values of h/L this represents a good approximation. At h/L = 1

it is a rigorous solution.

Post-Bifurcation Stability: We consider now a structure that has been

slightly modified as shown in Fig. 13 ny addition of a linear spring

which carries a part of the load.

Figure 14 shows load displacement curves for two structures with b/L

0.1 and p = 2 x 10 O. one is without a spring (c = 0) and the other includes

a spring with spring constant c = 2.5. The load displacement diagrams with

spring, primary and secondary, are obtained by addition of P*SPRING = c(6/L)

to the -Alue of P* corresponding to c = 0.

With a spring, buckling occurs, of course, at the same value of 6/L. However,

if the spring constant is sufficiently large the slope of the line for the

secondary solution becomes positive. The increase of the load in the spring

is more than sufficient to compensate for the decrease in the load carried

by the columns.

19
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The two-column structure discussed here illustrates the behavior of struc-

", tures of a more general nature. For example, the curve in Fig. 11

labeled OA'B'D is typical of failure of axially compressed cylindrical

shells which buckle plastically and develop nonsymmetric folds after the

load has reached its maximumr value, as shown in Fig. 6. The curve in

Fig. 11 labeled OBD is typical of shallow spherical caps under uniform

external pressure in which nonlinear prebuckling effects are important but

failure is by nonsymmetric bifurcation buckling. A rather thick cylindri-

cal shell under axial compression deforms axisymmetrically throughout the

collapse process. This would be indicated in Fig. 11 by a primary equilib-

rium path similar in shape to the curve OA'B'C but lying under it and not

intersecting the column bifurcation line at all. A very thin complete

spherical shell under uniform external pressure would have a primary equilib-

rium path that is linear in the prebifurcation range OB. Similarly, very

thin cylindrical shells supported in such a way as to prevent early buckling

at the ends would display essentially linear prebifurcation behavior.

Heavily stiffened shells display behavior similar to that represented by the

curve OBD in Fig. 14. After the skin buckles at B, much of the load

that was originally carried by it is gradually transferred to the stiffeners

as the depths of the buckles grow in the pobt-bifurcation regime BD.

Loss of Stability and Imperfections: It is important to notice thatin the

passing of a maximum in the primary path the structure loses stability.

-- . Under a load exceeding this maximum there exists no equilibrium configura-

tion in the immediate neighborhood. The structure is set in motion and the

.. process of buckling is violent.
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"On the other hand, the existence of a bifurcation point indicates only that

-. the equilibrium on the primary path loses its stability. The consequences

"of this loss of stability on the prirary path are not immediately clear.

As the equilibrium on the primary path loses its stability at the bifurca-

tion point, the structural behavior is governed by the conditions on the

secondary path. Thus a bifurcation point signifies only a lcia level at

which a new deformation pattern begins to develop. It does not necessarily

indicate loss of structural stability. The equilibrium on the secondary

path may be unstable. This is the case in our example of a two-column

structure without the spring. In this case the loss of stability oil the

primar' path results in the loss of stability of the structure. Buckling

is violent and in addition the critical load is more or less sensitive to

imperfections. With some initial crookedness the columns begin to bend in

the prebuckling regime. There is no real bifurcation but the primary path

approaches gradually the secondary path for a perfect structure. The be-

havior of imperfect structures is indicated by the broken lines in Fig. 14.

On the other hand, if equilibrium on th:? secondary path is stable, as in the

case with c = 2.5 in Fig. 14, the structure can take additional load be-

yond the bifurcation point. However, a new deformation pattern, in some

"sense orthogonal to the prebuckling configuration, begins to develop and the

stiffness of the structure may be considerably reduced.

Buckling of Plates

In Figure 15 (a) is shown a plate simply supported on all four edges and

subjected to axial compression. It is assumed that the axial load Px is
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applied by means of a rigid block that enforces uniformity in the y-direction

of axial edge displacement u Figures 15 (b) and (c) show load-
0

deflection curves for perfect and imperfect plates. In tests of actual

plates, which of course contain unavoidable imperfections, it is difficult

*4. to detect the onset of buckling because it happens gradually, as one might

expect from Fig. 15 (b). The bifurcation point on the load-deflection

curve for the perfect plate does not correspond to failure of the struc-

ture, but indicates a load at which the perfect plate starts to bow later-

ally. With further increase in uniform end shortening above the bifurcation

value, the axial compressive stress resultant N begins to redistribute,x

becoming more and more concentrated near the edge supports, as depicted

in Fig. 16 (b).

The stress resultant distributions across the width of the plate et a cer-

tain axial station x are shown for four values of axial compression by the

curves 1-1, 2-2, 3-3, and 4-4 in Fig. 16 (b). At bifurcation the stress

"resultant is uniform and equal to N . Near the edges the axial fibers arecr

straighter than they are near the middle. Therefore, the end shortening is

accomplished primarily by membrane compression, resulting in a large Nx.

Near the midwidth the same end shortening is accomplished primarily by

bending, resulting in a small N.,. The behavior would be qualitatively simi-

* lar if the plate were compressed by uniform axial load rather than uniform

end shortening: The regions in the neighborhood of the ends x = 0 and x = a

remain fairly straight because of the restraint against lateral displacement

* "w there. As the post-bifurcation lateral displacement in the central region

increases the edge regions at x = 0,a act as webs which, through shear,

transfer the load away from the central region of the plate to similar effec-

tive axially oriented beams near the edges at y = - b/2. These effective

axial beams carry most of the compressive load.
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"* Approximate maximum loads for axially compressed stiffened plates are de-

"rived for design purposes from the so-called von Karman effective width

formula [ 27]:

b b(Nc/Nm)I/2 (9)eff cr/max

in which beff is an effective width shown in Fig. 16(c) over which one can

assume that the load in the plate is carried, and N is the maximum stress
max

resultant that can be carried because of yielding or some other stress failure

criterion. In the past the effective width formula (4.9) was used to calcu-

late maximum bending moments carried by airplane fuselages and wings.

Similar design procedures have been developed for plates subjected to in-

plane bending or shear loading. A comprehensive discussion of the ultimate

strength of plates in bending, shear, and combined bending and shear is

given ir. Chapter 5 of Ref. [ 28].

"Classical" Buckling of Cylindrical and Spherical Shells

Cylindrical Shells Under Axial Compression

The problem of buckling of thin cylindrical shells under axial compression

has received far more attention than most problems in structural mechanics

because of the extraordinary discrepancy between test and theory which re-

mained unexplained for so many years. Hoff [ 29] gives a meticulous and

very readable survey of work done up to 1966. Brush and Almroth devote a

major portion of a chapter of their book [ 4] to the subject.
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* The post-buckled state of an axially compressed cylinder is illustrated in

- Fig. 17. During a test of even a very carefully made cylinder an isolated

. buckle initially appears at an average stress considerably below the pre-

dicted bifurcation value of

"2" -1/2
Gc [3 (v )] Eh/a .6Eh/a ( 10)

This buckle is generally followed by a cluster of buckles in the same neighbor-

"hood which very rapidly deepen, change shape, and spread over a considerable

portion of the surface. The post-buckled pattern shown in Fig. 17 was ob-

tained by axial compression of the cylinder with a close fitting mandrel in-

side to prevent excessive growth of the buckles and consequent formation of

plastic hinges at their boundaries. Thus the buckle pattern spread over the

"entire surface. Figures 18 and 19 demonstrate the dramatic discrepancy

between test and theory over a wide range of radius-to-thickness and length.

The most significant trend of these data is the increasing discrepancy be-

"tween test and theory with increasing radius-to-thickness ratio a/h. It is

this trend that provides the clue that the discrepancy arises from the ex-

treme sensitivity of the critical load to initial imperfections: A reason-

able measure of geometrical quality is the ratio of initial deviation w (xe)
0

from the perfect cylindrical shape to thickness h. It is clear that for a

given fabrication method, this ratio will increase with increasing radius-to-

thickness ratio.
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One of the first studies of the sensitivity of the critical load to initial

S... geometric imperfections was carried out by Donnell and Wan [ 30]. Figure

S.- 20(a) shows load-deflectioncurves obtained from their analysis. The Koiter

theory [ 6], to be described later, provides rigorous proof of the extreme

"sensitivity of the critical load to initial geometric imperfections.

For many years several researchers attempted to obtain safe design loads for

"thin axially compressed cylinders by using numerical methods to calculate

the post-buckling load deflection curve from nonlinear theory. It was

thought that the minimum post-buckling load would provide a lower bound to

:.•. the load-carrying capability of the shell. These attempts are very carefully

"documented by Hoff [ 29], from which Fig. 20(b) is taken. The post-

* buckled curves labeled "CASE(l)",..."CASE(7)" indicate results of calcu-

lations on the digital computer with use of various trigonometric series

expansions to express the post-buckling deflection pattern. A converged

solution for the problem was never found. This approach was dropped because the

"extensive experimental evidence in Fig. 18 shows that the predicted post-buckling

"minimum load (CASE (7)) is unrealistically low to be useful as a guide to

designers for all but the very thinnest shells. Hence, the current ap-

proach is to use Koiter theory combined with empirical results to provide

"a confidence index, as will be described more fully later.

There was also an attempt to explain the discrepancy between test and theory

"by consideration of various boundary conditions. These studies are surveyed

by Hoff [ 29]. The lowest critical load obtained for any set of edge condi-

tions reported in Ref. [ 29]is 0 /a .38. This load requires the tangen-
"cr c"
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•- -g"tial displacement v to be free at the boundaries. Several sets of edge

conditions yield ac/l = 0.5. However, they all require that either
cr ol

~ the normal deflection w or tangential displacement v be free at the

edge. In view of measurements of deflectxons actually occurring during

"* tests, it appears that sufficient friction is present to prevent signifi-

cant displacements v and w at the edges. The critical mode for the

cases in which v is free corresponds to 2 circumferential waves, which

does not resemble observed buckling modes.

The cylinder under axial compression is very sensitive to small initial

imperfections because the critical buckling load corresponds to a mode

"the axial and circumferential wavelengths of which are quite small com-

-pared to the radius. Also the critical load is insensitive to wavelength.

Note that the classical formula, originally derived for axisymmetric

buckling by Lorenz in 1908 [ 31] and for nonsymmetric buckling by Timo-

shenko in 1914 [ 32], does not contain any reference to n or m , the

number of waves in the buckling pattern in the circumferential or axial

--. directions, respectively. Thus, a great variety of small initial imper-

- fections occurring anywhere on the entire shell surface would contain

-- significant components of critical or almost critical bifurcation buckling

mode shapes, modes of deformation that would cgow as the load in increased,

Seventually causing snap-through at a load far below that predicted for

"bifurcation buckling of the perfect shell, as shown in Fig. 20(a).
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A Caution for Novice Users of Computer Programs for Buckling: It is worth

emphasizing that the problem of the axially compressed cylinder, which appears

superficially to be an excellent, simple test case for a person learning to

use a computer program that he has acquired elsewhere, is really quite demand-

ing. The simplicity of the geometry tempts one to use a discretization with

fewer degrees of freedom than are needed to obtain a converged solution cor-

responding to a buckling pattern with short axial waves. The result obtained

from the computer program will probably be compared with the Timoshenko formu-

la, Eq. ( 10), which is based on the assumption of a uniform membrane pre-

buckling state. Depending on the edge conditions, the nonuniformity and non-

linearity of the prebuckling state near the edges lowers the predicted criti-

cal load from 8% to 20%, as seen from the case described in detail in the

discussion in Ref. [430J associated with Figs. 29 to 32. If nonlinear

prebuckling analysis is used, the p'-nlem is further complicated by the fact

that the nonsymmetric bifurcation buckling load is fairly close to the axi-

symmetric collaps,. load. A final difficulty is that several eigenvalues for

the bifurcation l.ads are clustered near the critical load, especially in

models for which edge effects in the prebuckling phase are not present or

are ignored by the computer program. All of these difficulties are discussed

in the example of the axially compressed monocoque cylinder presented in

Ref.[430] The reader is urged to study that material before dismissing a

computer programbecause it "can't even predict the classical buckling load

for an axially compressed monocoque cylindrical shell."

Stiffened Cylinders Under Axial Compression: The post-buckling state of an

axially stiffened cylinder is shown in Fig. 21. Notice that the buckling

mcde has much longer characteristic wavelengths than does that for the mono-

coque cylinder pictured in Fig. 17. Thi. is due to the increased axial

bending stiffness and results in rilder sensitivity of the buckling load
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"to initial imperfections. Figure 22 shows ratios of experin,-ntal to

theoretical buckling loads for a variety of cases, among them stringer

stiffened shells. Comparison of the ratio P test/Pcl for strin,.er stiffened

"shells with that for monocoque short cylinders and that for the other mono-

coque cylinders illustrated in Fig. 18 reveals the milder nature of the

imperfection sensitivity of the stringer stiffened shells.

Cylindersý under Uniform External Pressure or Torsion : Figures 23 - 27

show post-buckling states of cylinders subjected to hydrostatic pressure

or torsioi, and comparisons between test and theory. As with the stringer

stiffened axially compressed cylinders, the buckling modes are characterized by

long axial wavelengths and relatively few circumferential waves which

results in a milder sensitivity of buckling loads to initial geometric im-

perfections. The most sensitive systems are short cylinders (10 < Z < 100)
5--.°h-- -

under hydrostatic compression, cases for which the bif'.cation buckling

phenomenon resembles that for cylinders under axial compression. (See Fig. 25.)

Spherical Shells Under Uniform External Pressure: Kaplan [ 37] gives a

thorough survey of buckling of spherical shells subjected to uniform external

pressure. Early tests revealed that buckling initiates at some spot at

which a small dimple forms. To the writer's knowledge the formation of

multiple buckles in a complete spherical shell, as observed in axially

"compressed cylindrical shells, has not been observed for shells without an

interior mandrel. Figure 28 shows a post-buckled state in a shell with a

S •closely fitting interior mandrel. Each buckle subtends a small solid angle,

just as in the case of an axially compressed monocoque cylinder in which

28
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each buckle covers a very small fraction of the surface. As might be ex-

pected from this behavior, the critical load of a spherical shell subjected

* -to uniform external hydrostatic pressure is highly sensitive to initial

geometric imperfecticns.

Spherical Caps: The fact that an initial buckle subtends a small solid

angle stimulated those initially interested in complete spherical shells to

"model the problem of buckling of a complete spherical shell with use of a

shallow spher-cal cap clamped at its edge. Over the years the shallow cap

configuration evolved into a "classical" problem in its own right, studied

with almost the same intensity and frequency as the axially compressed

cylinder. However, as demonstrated in Fig. 29, the shallow cap problem

* has certain characteristics not present in the case of a complete spherical

.shell. These arise from the presence of the edge.

In Fig. 29 load-deflection curves are shown corresponding to linear and

nonlinear theories for prebuckling axisymmetric defurmations of caps

clamped at the boundary. The open circles on the linear load-deflection

lines indicate bifurcation btckling at the "classical" pressure for the com-

"plete spherical shell with the same radius-to-thickness ratio as the spheri-

cal cap. The classical buckling stress is given by the same formula as that

• for the cylindrical shell subjected to axial compression, Eq. 1 10). A is

a cap shallowness parameter given by

%" 1-X21 = 2 [3(1-V2  1/4 1/2 ( 11)

2 3 (1-V(Hfn)F..." where H is the rise of the cap above the plane in which the edge lies and

h is the thickness.
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.E- For X less than about 7 or 8 the behavior of the shallow cap little resembles

that of the complete spherical shell. With X = 0 (fVat circular plate) there

iJ no similarity at all: The load-deflection curve exhibits a stiffening

characteristic which results from the build-up of in-plane tension as the

plate deforms (Fig. 29(a)). With X less than about 3.5 the load-deflection

* .curve has no horizontal tangent and no bifurcation point so that there is

no loss of stability on the primary equilibrium path(b). For X less than

"about 6 there is axisymmetric snap-through, but no bifurcation buckling(c). For

X > 6 bifurcation buckling into a nonsymmetric mode occurs at a lower load

than either axisymmetric snap-through of the cap or classical Duckling of

a complete spherical shell(d,e,f). Notice that as A increases above 7 the

prebuckling behavior becomes more and more linear. Figure 29(f) corresponds

to a configuration in which the cap is no longer "shallow" if that word may

be used as a means of classifying structural behavior: The nonuniformity

"of prebuckling behavior occurs in a relatively narrow band or "boundary

layer" near the edge. Any further increase in A results in no further

"alteration in the curves or locations of the bifurcation points presented

in Fig. 29(f). No matter how high A is, the behavior of the incomplete

spherical shell clamped at its boundary will never be the same as that of

the complete spherical shell because the presence of the boundary gives rise

to edge buckling at a pressure from 80% to 90% of the classical value p

For actual spherical shells and shallow caps random imperfectionq play a

"major role in the loss of stability under uniform external pressure. Figure

30 demonstrates that the effect of initial imperfections is just as severe

"as in the case of cylindrical shells subjected to axial compression.
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SECri0N 2

NONL-INEAR COLLAPSE

Summary

'% ,

"As has been emphasized already in the discussion of the two-column shallow

truss (Figs. 10 - 14), loss of stability of a shell structure may be

due to nonlinear collapse ("snap-through") or to bifurcation buckling. The

4. purpose of this section is to present many examples in which the failure mode

is nonlinear collapse. Examples are given of axisyrmietric collapse of elastic-

plastic-creeping monocoque cylinders under axial compression and ring-

- stiffened cylinders under external hydrostatic pressure, of general collapse

of curved and straight pipes under uniforn bending, of cylindrical shells

and panels with concentrated loads and cutouts, and of noncircular cylinders

under axial compression. The section closes with an example of axisymmetric

collapse of an axially compressed complex rocket interstage. The collapse
•-C

is caused by a local load path eccentricity that gives rise to concentrated

bending and lucal plastic flow.

.- Elastic-Plastic-Cxeep Collapse of Axially Compressed Monocoque Cvlinders

* No Creep:Tests nave been conducted on cylinders by Lee [ 40],Batterman [ 41],

Sobel and Nlewman [ 42], and others referenced in Sewell's survey [ 431

Tests on truncated cylinder-like (steep) conical sthells have recently been

* conducted by Ramsey [ 44]. In all the tests, end displacement was controlled.

Local end effects such as bulging due to Poisson's effect, so obvious in Fig.

.' 6, are ignored in early analyses of plastic buckling of Lxially compressed

l cylinders. Batterman [ 41] used flow theory and Gerard [ 45] used deforma-
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tion theory. Murphy and Lee [46] were the first to include the effect

of radial and restraint on plastic buckling load predictions. Their pre-

dictions are shown in Figs. 31 and 32 with the results of Batterman [41],

"G"erard [45], and Bushnell [47] superposed in Fig 32. End effects are

accounted for in the analyses of Bushnell [47], who used the BOSOR5

computer program, and Sobel and Newman [42], who used STAGSC [48]. All of

- -the studies in which end effects are included are based on incremental

flow theory and all predict that the collapse load corresponding to axi-

symmetrical deformation occurs before bifurcation, as shown in Fig. 6.

The comparisons between BOSOR5 predictions and Lee's tests [47] are listed

in Table 1 and between BOSOR5 predictions and Batterman's tests [47] are

listed in Table 2. The far post-buckled collaqpe mcde for cylinders with

R/t less than about 30 is shown Fig. 33.

Two important conclusions can be drawn from the results prese- ed in Figs.

31 and 32 and Tables 1 and 2:

(1) ihe inclusion of end radial restraint in theoretical models

essentially eliminates the discrepancy between test and theory, and reveals

that in the case of plastic buckling of axially compressed cylinders

"tested in the usual way it is not necessary to resort to the use of bilur-

cation buckling analysis with deformation theory or flow theory with a

singularity in the loading surface in order to bring test and theory

into agreement.
0

(2) Fairly thick metallic cylinders (R/t < 90) are not very sensitive

"to initial random imperfections if they buckle at stresses above the

_artrinl proportional limit. The axisymmetric bulge which develops near

an end, so evident in Fig. 6 and in Murphy and Lee's prediction shown in

Fig. 31, represents a predictable "imperfection" that grows with load and

is much more significant than any unknown imperfections due to fabrication

*" or handling errors, providing the cylinder is machined.
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"Gellin [ 49] shows that collapse loads of axially compressed cylinders

buckling in the plastic range are not as sensitive to initial axisymmetric

imperfections as are collapse loads of elastic cylinders. Hutchinson [ 50]

demonstrates the same result for externally pressurized elastic-plastic

spherical shells. This fact, the fact that the tangent modulus of most

metals decreases by more than an order of magnitude within a stress range

of 20% of the .2% yield stress, the fact that high quality cylinders with

the relatively low radius-to-thickness ratios required for plastic buckling

"are easier to fabricate than those with high R/t, and the fact that signifi-

cant predictable axisymmetric bulges due to radial end restraints grow as

the load is increased, combinf to reduce dramatically the deleterious effect

of random unknown imperfections. We can therefore make fairly accurate

predictions of collapse loads of axialy co... -cced cylinders tested in the

usual way. Note that this conclusion may not apply to cylinders in which

the ends are locally tapered and other devices are introduced into a tEst

to prevent failure due to bulging as shown in Figs. 6 and 31. It also may

not apply to cylinders which have been fabricated by cold bending and welding

rather than by machining.

Creep Included: Figure 34 shows the normal deflection (axisymmetric)naar the

clamped end of an axially comrressed cylindrical shell which creeps according

to the power law

A m (12)

c

in which c is the effective creep strain. The material is stressed locally
ic

beyond the proportional limit. The BOSOR5 computer program [ 47] was used

to obtain the res-" ts, which agree well with those from a test conducted by

Samuelson [ 51]. The small plots inserted within the frame of the large
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plot show peak normal displacement near the edge and applied loading as

functions of time.

Axisymmetric creep collapse is caused by the increasingly rapid growth of the

edge bulge caused by th• Poisson effect coupled with radial restraint at the

end of the cylindrical shell. In addition to creep, local plastic flow

occurs due to bending in the waves near the clamped end.

Creep Collapse of Ring-Stiffened Cylinder Under External Hydrostatic Pressure

Figures 35 (a) and 36 (a) show a titnaium ring-stiffened cylinder and axi-

symmetric collapse mode due to uniform external hydrostatic pressure ap-

plied in steps as shown in Fig. 35(b). The creep law for the titanium is

M mn
. AGt ( 13)
c

in which m 13.89 and n = 0.189 and 6 is the effective creep strain. The

dots along the middle surface of the cylindrical shell shown in Fig. 35(a)

indicate nodal points in the axisymmetric discretized model [ 47]. Sym-

metry conditions were applied at the symmetry plane, as is evident in the

deflected -.hapes plotted in Fig. 36(a). Solutions were obtained for each

time indicated by a dot in the loading schedule plotted in Fig. 35 (b).

"Fig. 36(b) gives load-deflection curves for computer runs in which the

creep is neglected and included. If creep is neglected the predicted

failure mode is nonaxisymmetric bifurcation buckling with 12 circumferen-

tial waves at a pressure of about 1810 psi. The prebuckling deflected shape
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-' (exaggerated) and the bifurcation buckling mode are shown in Fig. 36(c).

.. With creep included, the predicted failure mode is axisymmetric collapse at

*' a pressure of about 1700 psi. The presence of creep causes the axisymmetric

inward deflection between the second and third ring (Fig. 36(a))to be

bigger than it would be with creep neglected in the analysis, leading to

a lower axisymmetric collapse load.

Snap-Through of Very Shallow Spherical Caps

From Figure 29 we saw that for small "shallowness" parameter X spherical

caps clamped at the edge collapse axisymmetrically rather than exhibit non-

symmetric bifurcation buckling. Figure 29(c) shows a load-deflection

curve for such a case. In a test in which the pressure is held constant

rather thazn the displacement, the cap would snap through to its inverted

state at the oressuxe rur wh:ich the load-deflection curve has a horizontal

targent. Figure 37 shows instability pressure vs. shallowaess parameter

and comparisons between test and theory for very carefully fabricated

specimens. This figure should be compared to Fig. 30, on which many early

test points corresponding to less well made specimens are included. The

predicted transition at about )= 6 from axisymmetric collapse to nonsymmetric

bifurcation buckling is qualitatively supported by the newer test results

* displayed in Fig. 37.
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Straight and Curved Tubes Under Bending and External Pressure

Introduction

One of the earliest efforts in nonlinear structural analysis was presented

in 1926 by Brazier 1 52]. His paper is concerned with the problem of the

stability of cylindrical shells under bending. If a long tube is subjected

to bending, its cross section flattens. Consequently, its bending stiff-

ness deteriorates with increasing load. The primary path, a graph showing

the beniding moment as a function of applied curvature, exhibits a maximum.

Brazier performed a somewhat approximate analysis and found that the limit

of stability is given by

r -- "2V El~ah2

M = 2141

If the maximum stress caused by this moment is computed with use of the undis-

torted cross section properties we find (with V = 0.3)

R = 0.33 E(h/a) ( 15)

The problem of stability of circular cylindr cal shells under bending was

solved as a bifurcation buckling problem by Seide and Weingarten in 1961[ 53].

* .Assuming that the prebuckling behavior can be def.ined with sufficient accu-

racy by a linear membrane solution, they found that the critical buckling

• stress is only 1.5 percent higher than the critical uniform compression

stress for a shell with a/h = 100. For thinner shells the differ.'nce is

even smaller. Thus for all practical purposes, the critical stress cor-

responding to the Seide-Weingarten model with V 0.3 is
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a CR =0.605 E(h/a) (16)

This value is well above the critical stress found by Brazier for

"infinitely long cylinders. Boundary conditions usually restrict deforma-

tions so that at the shell edges the cross section remains circular. This

restrains the cross section flattening at all axial stations. Finite

length shells therefore collapse at load levels that are higher than is pre-

"dicted by Brazier's analysis. For sufficiently short shells the prebuck-

ling behavior is well approximated by the linear membrane solution. With

neglect of the effect of initial imperfections Eq. ( 16) represents a

satisfactory solution.

For longer shells there is a coupling between the flattening of the cross

section and the formation of a short axial wavelength or wrinkling buckle

pattern. The flattening of the cross section increases the local radius as

well as the actual bending stress. Consequently, it reduces the load

level at which the wrinkling pattern appears. For the infinitely long

shell we must consider the possibility that the critical load corresponds

to bifurcation from a nonlinear prebuckling state. For a cylinder of

finite length, the wrinkling pattern is not orthogonal to the smooth

prebuckling flattening mode and therefore we do not have a situation of

pure bifurcation. However, the wrinkling mode as a component of the pre-

buckling displacement is extremely small until a load level is reached at

which it begins to grow rapidly. The structural behavior is therefore

approximately the same as if a bifurcation point did exist.
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"_ Long Tubes and Elbows: A Survey of Work Done

The elastic-plastic collapse and bifurcation buckling analysis of

straight and curved tubes subjected to bending is needed for design and

evaluation of nuclear power plant piping components, offshore pipelires,

and other structures involving tubular members. Most of the recent work

on piping has been motivated by a desire to be able to predict stress,

stiffness, and limit moments of piping systems in nuclear reactors. Since

the most flexible and highly stressed piping components are elbows, a sig-

nificant portion of the total effort has been focused on test and analysis

of various elbows under in-plane and out-of-plane moments. In the off-

shore oil industry the laying of underwater oil pipelines involves bending

of rather large diameter straight pipes in the presence of external hydro-

static pressure. The degree of ovalization of the pipe cross section under

-•• bending is very much affected by the external pressure, as will be seen later.

Elastic Models: The bending of elastic piping components is explored in

Refs. [ 52] - [ 62]. Brazier [ 52] was the first to calculate collapse

moments, including in his theory the important effect of increasing ovaliza-

tion (flattening) of the pipe cross section as the bending moment is increased.

Clark and Reissner [ 54] used an asymptotic formulation in which ovalization

Sof initially curved tubes under bending is assumed to be symmetric about

a tube diameter normal to its plane of curvature. Wood [ 55] expanded

Brazier's treatment to include pressure, and Reissner [ 56] further im-

* proved the theory by including higher order nonlinear terms and introducing* . -,-

the effect of pressure on the bending of slightly curved tubes. Aksel'rad

57] was the first to predict bifurcation buckling of straight pipes

Sunder bending, including the effect of flattening of the cross section in the
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prebuckling analysis. In all of the analyses just cited, end effects are

"icnored; the pipes are assmnned to be infinitely long. Stephens, et al [ 58]

used the STAGS computer program [ 48] to calculate collapse and bifurcation

buckling of initially straight tubes of finite length. For tubes with

radius-to-thickness R/t = 100 they carried out a parameter study, predicting

%W1 limit and bifurcation bending moments for length-to-radius ratios

3.4 < L/R < 20. They included internal and external pressure in their

analysis.

Elastic analyses of piping elbows have been performed by Dodge and Moore

" 59] who wrote a computer program, ELBOW, based on a model sirmilar to

"Clark and Reissner's [ 54] and Hibbitt, et al [ 60], who introduced a

curved piping finite element into the MARC computer program [ 63]. This

element, called #17 in the MARC element library, is based on neglect of

elbow end effects. Discretization is in the circumferential coordinate

only. Sobel [ 61] used the MARC #17 element in a convergence study with

mesh size. He referred to Clark and Reissner's asymptotic formulas to

' establish optimal finite element nodal point density in the hoop direction

as a function of elbow geometry. Rodabaugh, et al [ 62], performed a study
.0, 0, 0 ,rih

of 45°, 90°, and 180 elbows, determining the stiffening effects of .traight

pipes attached to the ends of the elbows. They used the EPACA computer pro-

gram [ 64] for their analysis in which end effects are included. Although

EPACA includes the capability to treat structures made of elastic-plastic

material, the work described in Ref. [ 62] is restricted to elastic

* •behavior.
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Bending Tests on Long Elastic-Plastic Straight Pipes and Elbows: Several

test programs on bending of elastic-plastic straight pipes and elbows have

been carried out in the past decade. Bolt and Greenstreet [ 65] give

- -load-deflection curves for 14 commercial 6-in. diameter carbon steel el-

* bows and one 6-in. diameter strainless steel elbow with and without in-

•-..;ternal pressure. Vrillon et al [ 66] compare test and theory for the

in-plane bending of a 1800 elbow subjected to both opening and closing

moments. They used the TRICO program [ 67] for Cheir analysis. Sherman

68] tested several straight pipes, noting formation of relatively short

axial wavelength buckles just before collapse. A comparison between one

of Sherman's experiments and theoretical results obtained with a modified

*%i. .% version of the BOSOR5 computer program [ 47] , [ 69] is given later.

0 0Sobel and Newman [ 70] describe a test on a 90 elbow carried out on the

"- • multiload test facility (MLTF) at the Westinghouse Advanced Reactors Divi-

sion. Bung, et al [ 71], ran tests at elevated and room temperature on

304 stainless steel elbows.

"Elastic-Plastic Piping Analysis: There are basicelly three types of elastic-

plastic piping analysis for the prediction of stress, stiffness, and buck-

ling failure of straight and curved tubes and combinations thereof:

1) A "brute force" method in which the tubes are divided into a

two-dimensional field of finite elements;

2) A simplified model in which tube end effects are ignored and

discretization is in the circumferential coordinate only;

I-• 3) A further simplified model in which resultant forces and moments

integrated over the tube cross section are related to strains and changes

in curvature of the tube axis (beam model).
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The STAGSC computer program [ 48], the EPACA code [ 64], and the TRICO

"code [ 67]have been uzzd for the "brute force" analysis of elastic-

plastic elbows attached to straight pipes. Vrillon, et al [ 66], Roche

and Hoffman[ 72] and Skogh and Brogan [ 73], used these general purpose

shell analysis computer programs to calculate moment-deflection curves for

"combinations of straight pipes and elbows, including elastic-plastic mate-

rial behavior ani] moderately large deflections. Remseth et al [ 74], cal-

calated elastic-plastic collapse of straight tubes subjected to comilined

bending and external pressure in a two-dimensionally discretized model in

which arbitrarily large rotations are permitted. These nonlinear analy-

ses require large amounts of computer time. The more economical but less

rigorous one-dimensionally discretized model has been employed by Mello

and Griffin [ 75] and Sobel and Newman [ 76] who used the MARC computer

-/ program [ 63] element #17 [ 60], and by Bushnell [ 69], who modified

BOSOR5 [ 47] to obtain predictions for the bending and buckling of straight

pipes and elbows. The most economical and more approximate beam-type

models have been used by Roche, et al [ 77], Spence and Findlay [ 78, 79]

and Calladine [ 80]. Popov, et al [ 81], used a beam bending model com-

- bined with a rigorous axisymmetric large deflection elastic-plastic analy-

'sis to predict axial wrinkling of pipes under combined internal pressure,

axial loading and flexure. However, they neglect the important effect of

ovalization of the pipe cross section during bending.

Axisymmetric Model of Long Pipe or Elbow Bending Problem:

In the following section results fron an approximate analysis of the second

type (one-dimensional discretization) are given for a straight pipe and an

elbow. The theoretical results were obtained with a modified version of BOSOR5

47, 69]. In [ 69] a uniformly curved pipe is treated as if it were

part of a toroidal shell. The model is similar to that described in
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"Ref. [ 82]. Bending in the plane of the curvature of the pipe ce•aterline

is applied by means of an appropriate temperature distribution over the

pipe cross section, as is described in [ 69] and summarized here. Every

cross section of the uniformly curved pipe is assumed t- deform identically.

Therefore, the structure can be treated as a shell of revolution, a torus.

Figure 38(a) shows the undeformed curved pipe reference surface with

centerline radius of curvature, b, and meridional radius of curvature, a.

The centerline radius of curvature of the deformed pipe reference surface

(Fig. 38(b), is R and the cross section has ovalized such that a gene-

rator that was originally at a radius r=b + a cosý is now at a radius R + z,

where z is given by

* z = (a+w)cosO - u sinO ( 17)

If we assume that the centerline remains inextensional, the reference sur-

face axial strain is

b
(R+z)- (b + a cosý)

R
e= b+ a co ( 18)

Rearrangement of Eq. ( 18) and use of the relationships

* cost = r/R 2 ; siný = -r' - - dr/ds ( 19)

\ '• leads to the expression

b a(- - ) COsO
"e (w/R + ur'/r) + a20

R:1+- cos2

b
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in which R2 is the normal circumferential radius of curvature of the

"reference surface of the undeformed toruF, r is the radius to a point

S..on the torus reference surface, and r' is the derivative of r with

respect to meridional arc length s. These quantities are indicated in

Fig. 38(c).

"Simulation of the Pipe Bending Problem by Thermal Loading of a Torus: In

order to use BOSOR5 to creat the problem of elastic-plastic bending and

". ""bifurcation buckling of a curved pipe, it is necessary to write the axial

strain given by Eq. ( 20) as a st s--roducing prebuckling hoop strain

for the shell-of-revolution (torus) analysis. This is easily done by defini-

tion of the prebuckling stress-producing hoop strain as

-... e=e 2 -e 2 AT ( 21)

in which, from Eq. ( 20) it is seen that

nb

-2= b(w/R2 + ur'/r) ( 22)

"Ot AT 1a cos4 23)
2T R _ 1 + a cos4

In this way, the problem of bending of a curved pipe is simulated by a

problem of a nonuniformly heated torus. Further details of the analysis

are given in [ 69].

Collapse and Bifurcation Buckling Moment of a Long Straight Pipe: Figures

39 and 40 pertain to the elastic-plastic bending, collapse, and bifurca-

tion buckling of a straight pipe tested by Sherman [ 68]. (In Sherman's

tests there was no pressure, however.)
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Figure 39 shows test results and the results of two BOSOR5 runs, one in

which the pressure is zero and the other in which the pressure is one-half the

external pressure p that would cause buckling in the absence of an ap-

plied bending moment, M. The pipe material is elastic perfectly plastic

2with a yield strength of 421 N/mm . The quantity k is the curvature

change of the pipe axis (Fig. 38(b)). With zero external pressure,

"bifurcation bucklinq is predicted to occur at an applied moment slightly

below that corresponding to nonlinear collapse due to flattening of the

cross section. Thus, in a test of such a pipe one would expect to see rela-

tively short axial-wavelength wrinkles or a single wrinkle appear just .fore

failure. Indeed Sherman observed the formation of such buckles in his tests.

With external pressure, ovalization or flattening of the pipe cross sec-

tion is predicted to occur more precipitously with increasing applied

curvature change k = (/R - l/b). Note, however, that the maximum moment-

carrying capability of the pipe is not much less than that of the pipe

without external pressure. In the case treFted here 1ifurcation buckling

occurs with a somewhat shorter axial wavelength at a value of k slightly

greater than that corresponding to collapse due to flattening of the cross

-" - section. Hence, if the moment M is applied rather than the curvature

- -. change k , axial wrinkles would not appear before failure. Figure 40

shows the predicted deformations of the pipe cross sections with and with-

out external pressure at k = .0432 m The deformations are exaggerated

but plotted to the same scale in Figs. 40(a) and 40(b).
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"" Collapse of a 900 Elastic Plastic Elbow: Figure 41 shows a moment-deflec-

i.-.' .tion curve rrom a test on a 304 stainless steel elbow by Sobel and Newman

*'. - [ 70] compared with results from the BOSOR5 analysis just s=marized. The

BOSOR5 results underestimate the true strength because straight pipe sec-

tions to which the elbow was attached in the test as well as attachment flanges

prevented the ends of the test elbow from flattening as the moment was in-

creased. In the BOSOR5 analysis the degree of ovalization is assumed to be

constant along the curved axis of the elbow. Unlike the case of the

straight pip There is no bifurcation involving short axial waves or

"wrinkles before the maximum moment is reached. Other results for both

opening and closing moments and 1800 elbows are presented in [ 69].

* Collapse and Bifurcation Buckling Due to Bending of Straight Elastic

. Pipes of Finite Length: Stephens, et al [ 58], investigated the effect of

length on instability of straight elastic tubes. Figure 42 (a) and (b)

demonstrate this effect. The ends of the pipes are constrained to remain

circular. Figure 42(a) gives load-deflection curves (dashed) and

maximum moments (solid) for pipes of various length-to-radius L/r with,

radius-to-thickness r/t = 100. The normalization factor I is
cr

M =0.605 O rt2E ( 24)
cr

"which corresponds, for v = 0.3, closely to the critical moment originally

calculated by Seide and Weingarten in 1961 for bending of simply supported

-O cylindrical shells [ 53]. This formula results when one assumes that the

moment M is generated by an axial resultant N that varies around thei--,cr x

circumference as
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" N = -N cos8 ( 25)
q x cr

so that

M =N iTr ( 26)cr cr

For short cylinders under bending, buckling is of ti.c' bifurcation type

and occurs approximately for N equal to the critical value correspond-"cr

ing to uniform axial compression, that is

2
N = .605Et /r ( 27)

cr

- Use of the ric-ht-hanu- if Eq. ( 27) in Eq. ( 26) yields the result

for M given in Eq. ( 24).
cr

As shown in Fig. 42 (b), straight unpressurized cylinders of any length

"subjected to bending become unstable by bifurcation buckling, not by

"snap-through at a limit point on the load-deflection curve. However, the

bifurcation point lies just below the limit point throughout the range

of L/r. Furthermore, for long cylinders bifurcation occurs only after

"considerable flattening of the cylinder cross section, as can be seen fro.

* Fig. 42(a). The results of the analysis of Stephens, et al [ 58], are

included in this major section on n±onlinear collapse rather than in the next

on bifurcation buckling because they obtained them via a collapse or limit

- load analysis with use of the STAGS computer program [ 48,. This they did

by introduction of a very small initial imperfection with a short axial
J ..

wavelength
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"" w./t = (10- 3) cos (7r(L/2-x)/X) cosne ( 28)
1

in which X/L = 0.017 and

K3 for 6 < L/r < 15

n 29)

2 for L/r = 20

Thus, Stephens et al f 58] converted a bifurcation point such as Point B

in Fig. 7(a) into a "snap-through" point such as Point E. Because the

initial imperfection given by Eq. ( 28) is so small, this limit point for

all practical purposes, coincides with the bifurcation point.

The nonlinear collapse is defined in [ 58] as that load for which the

curve relating the applied bending moment to t-ie growth of an axial

wrinkle of the form given in Eq. ( 28) has a horizontal tangent. Generally,

this axial wrinkle does not begin to grow until a considerable amount of

bending moment has been applied. The procedure for determining buckling

loads is illustrated in Figure 43 for a cylinder with geometric proper-

ties of L/r = 10 and r/t 100, and an external pressure equal to -0.5p
cry

where pcr is defined in [ 58] as

Pcr= .926 Et5/ 2 /(r3/ 2 L) ( 30)

Usually, the growth of the wrinkling mode is not easily detected since its

amplitude is small in comparison to other shell deformations, in particular,

to the Brazier type flattening of the pipe cross section. To detect the

growth of the wrinkling mode it is convenient to take a displacement state at

a load level near where this growth is suspected to initiate and use it as
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a datum state. This datum state is subtracted from all subsequent displacement

fields at higher load levels. The difference 6 w inithe normal displace-

ments is calculated at the meridian of maximum compression and is plotted as

a function of axial distance in Figure 43(a), where an axial wave of

amplitude "a" is shown to be developing near the midlength of the cylinder.

The applied bending moment is then plotted as a function of the amplitude

of the wave as shown in Figure 43(b). If this moment versus amplitude

curve approaches a horizontal tangent, then a mode of collapse hac occurred

which is called the short-wave axial buckling mode in [ 58].

After wrinkling starts to develop, the wrinkle amplitude increases rapidly

with small increases in load. The rapid growth, although not a true bi-

furcation, may be consideted to indicate that bifurcation based on a non-

linear prebuckling state would have occurred near this load if no imperfections

had been present. In [ 58] collapse is assumed to occur when relatively

large increases in wrinkle amplitude occur for increases of moment of the

order of 0.01%. Buckling and, therefore, collapse for this particular

example occurs at approximately a value of M equal to 0.636Mcr.

Other results, including the effect of internal and external pressure, are

given in [ 58].
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Collapse of Cylindrical Panels and Shells

with Concentrated Loads and Cutouts

Introduction

- Most of the exsmples of nonlinear collapse shown so far can be analyzed with

mathematical modcls --n. whi--h th.e discretization is one-dimensional. An

exception is the collapse of finite length tubes in bending just described.

The problems described in this section must also be treated with two-

dimensional discretization. The distinction between one and two- dimensional

discretization is important because of the great difference in computer

cost for cases with equivalent nodal point density. With one-dimensionally

discretized models, convergence with increasing nodal point density is not

too important becau6e one can generally afford to provide more than enough

nodes to be on the safe side. With two-dimensionally discretized models,

however, limitations of budget for computer runs and limitations of com-

puter core and auxiliary mass storage capacity often dictate the use of

models with rather sparse nodal point distributions. The quality of the solu-

tions is questionable because the sparsely discretized models behave dif-

ferently from the actual continuum and the size or even the sign of the

error is rarely known.

Prediction of nonlinear collapse of structures that require two-dimensional

discretization is expensive because large systems of equations must be set

up and solved iteratively for many load increments. These systems of equa-

tions have fairly large bandwidths. The great expense of solving s *h

systems has been a motivating factor in the search for efficient and accu-

rate numerical strategies. Many of these are described in Ref. [ 81.
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O One of the straLtegies is to treat the two-dimensional problem as a linear

bifurcation problem, a modeling technique that is usually more appropriately

applied in cases involvinq shells of more general geometry. (In the linear

bifurcation model thp hi-i.t hH.hrcation point on the linear prebuckling

load-deflection line is calculated. The point shown in Fig.23 of[430]corres-

ponding to the pressure P is an example.) This shortcut is cheaper be-
*'[ lb

cause it involves solution of only one linear equilibrium problem plus

•-•.", one eigenvalue problem, which is usually equivalent to solution at about

two to four load steps of a nonlinear equilibrium analysis. We shall see

several cases in this section, however, for which the linear bifurcation

model is inadequate.

The question arises, of what use would a nonlinear bifurcation model be?

There are two reasons why such a model is not usually advantageous. In

the first place, bifurcation from the nonlinear fundamental state in per-

fect two-dimensional nonlinear shell problems is much more rare than for

"axisymmetric shells simply because there is less symmetry in the two-

dimensional case. Therefore, bifurcation modes that are orthogonal to

the prebuckled state determined from nonlinear analysis are less likely to

"exiLst. In the second place, it is generally just as expensive to calcu-

late the nonlinear prebuckling sta-e for -,:he perfect system as it is to

• calculate the nonlinear precollapsed state for. the same system in which a

small general imperfection has been introduced in order to convert any

bifurcation points, such as Point B in Fig. 7(a), into limit points,

O such as Point E.

-43
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O The only way in which a nonlinear bifurcation model might be used to ad-

vantage would be to provide intermittent estimates of the collapse load such

that the total number of load increments required to find this critical load

is reduced. Also, it va turn out that collapse corresponds to rapid develop-

ment of a short wave mode superposed on a smooth precollapsed state, as is

seen in the example of the finite length tube in bending. In such cases

one might set up two discretized models, a fairly crude one to capture

the smooth nonlinear precritical deformation and a locally fine one in order

to calculate accurately the short wave bifurcation from the -_,oth pte-

critical deformed state. The generally expensive prebifurcation noniinear

iterative solution would be carried out with the sparsely dizctetized

model and the fa- less frequently performed eigenvalue analysiL ,:)uld be

carried out with the more finely discretized model.

Cylindrical Panels and Shells with Concentrated Normal Loads

Panels: Figure 44 shows a panel simply supported on all four edges.

This panel collapses and snaps through to an inverted position. The

strategy used to follow the load-deflection curve over the maximum is

described in [ 84] and summarized in [ 8]. Bergan, et al, calculated

the entire dashed curve with load incrementation and decrementation. A

similar configuration is shown in Fig. 45. In this example the cylindri-

cal panel has free longitudinal edges. The simply supported panel col-

lapses because distortion (flattening) of the cylindrical cross section

reduces the axial bending stiffness, an effect similar to the Brazier

flattening of a long complete cylindrical shell due to bending. If the

curves edges are restrained from axial motion (clamped), axial tension develops

as the panel deflects, preventing collapse.
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Note that linear bifurcation buckling predictions for this case bear

.-. little relationship to the true behavior. In the simply supported case the

linear bifurcation load greatly overestimates the load at which the panel

collapses because Lif-.catiJor, anallysis does not account for the flatten-

"-. ing of the cross section. In the clamped case bifurcation is predicted

[-. when no collapse occurs because the linear analysis does not account for

the stabilizing axial tension that develops in the panel as it deflects

vertically.

Complete Cylindrical Shells: Okubo, et al [ 86], investigated the instability

of cylindrical shells under combined internal pressure, bending, and inward-

" ,*. ~directed concentrated normal loads. For small concentrated loads the

* cylinders failed in a general instability mode that resembles the buckling

mode of a cylinder under uniform axial compression: A cluster of buckles,

centered on the site of the concentrated load, develops on the compression

side of the cylinder. In these cases the contribution of the concentrated

"- load is to produce an effective imperfection that triggers general instability.

e.. The shell cannot sustain higher bending moments after buckling. For large

*• concentrated loads there are two failure modes: Initially the moment-

deflection curve displays a local maximum which corresponds to a local

snapping phenomenon involving development of a single dimple at the site of

"the concentrated load. At this maximum the overall compressive stress from

"the bending moment is small enough so that the buckle pattern does not

spread to regions remote from the location of the concentrated load. The

shell sustains moments in excess of this local maximum, eventually failing

as before in general instability.

Figure 46 is one of the interaction curves experimentally determined by

.kubo, et al j 86] for the case of no intt-rnal pressure. The solid lines
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represent a curve-fitting of the experimental data. Essentially the same

failure loads were found for the same specimen tested on two different dates.

For concentrated loads Q less than about 0.03 lb, the critical moment is

unaffected: The concentrated load simply produces an imperfection that is

less than or equally severe to those already present in the unloaded shell.

For large concentrated loads, local instability or snapping precedes general

instability. The moment-deflection curve has a local peak analogous to that

shown for the axially compr,'ssed oval cylinder in Fig. 4 of Ref. [430]. The

critical moment corresponding to general instability exceeds that corres-

ponding to local snapping and is independent of the value of the concentrated

load Q. In this range of Q the imperfection created by the concentrated

load acts essentially as a cutout, as shall be seen from results presented

next. For the intermediate range of Q the critical moment depends on Q and

the load deflection curve monotonically increases until failure of the shell

occurs in a general instability mode.

Collapse of Axially Compressed Cylindrical Shells with Cutouts

Rectangular Cutouts: Figures 47 - 53 pertain to this section. Figures 47

and 48 show a buckled cylinder which has two diametrically opposed rectangu-

lar cutouts. A plot of load vs. normal deflection at a point on the edge of

the cutout is given in Fig. 49, along with a prediction of failure-from

linear bifurcation buckling theory. In this case the bifurcation analysiq

underestimates collapse by more than a factor of two. The bifurcation model

predicts the load at which the vertical edge of the cutout buckles. It is

clear why this load does not correspond to failure of the structure: As

bending occurs near the vertical edges of the cutouts the compressive

stresses are redistributed away from these regions and the
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"load is carried by the remaining portions of the shell. Thus, the shell

shown in Figs. 47 and 48 collapses after significant stress redistribu-

tion has taken place. In the post-bifurcation range the deformations in

the neighborhoods of the cutouts have the effect of making these cutouts

appear bigger structurally than they do visually.

Note that in this case the relationship of the bifurcation buckling load

estimate to the actual collapse load is opposite to that for the case in

,- Fig. 45. This is because the consequences of the nonlinearity are differ-

ent for the two situations. The geometry change in the cylindrical panel

with the concentrated load weakens the panel globally and does not result

'-. in any alternative means for the storage of strain energy. Similarly, the

* geometry change in the cylinder with the cutout weakens the structure.

However, the weakening, local in this case, has a different result: Strain

energy is transferred from the rapidly deforming regions to other regions

which are capable of accepting more axial compression before becoming

"unstable.

In general, one can assume that if the bifurcation buckling mode is fairly

local and if alternate post-bifurcation load paths are available, then a

linear bifurcation buckling model will yield a conservative estimate of the

* collapse load. On the other hand, if the bifurcation buckling mode is

global and if precollapse deformation is significant, global, and of an un-

favorable nature (e.g., curvatures decreasing), and if no alternative load

* paths are available in the post-buckled state, then the linear bifurcation

buckling model will generally yield an unconservative estimate of the col-

lapse load.
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* Figures 50 - 52 show comparisu's between test and theory for buckling

of cylinders with two diametrically opposed rectangular cutouts [ 87].

" The STAGS computer program [ 48] was used for the analysis. Figure 51

shows how the axial stress is redistributed away from the cutout edge as

local bending occurs there. Figures 50 and 52 show that the agreement

between test and theory is very good even though these axially compressed

"cylinders are very thin (R/t = 437). The cutout is large enough that it

represents a predictable imperfection that is much more significant than

-t.-. the unavoidable, random, unmeasured imperfections in middle surface geom-

etry, thickness, material properties, and boundary conditions.

-. ,' Figure 53 gives load-deflection behavior and a linear bifurcation buckling

load for an axially compressed cylinder of the same geometry as that shown

in Fig. 50 with the rectangular cutout reinforced. Collapse initiates in the

neighborhood of Point B. The effect of the axial stiffeners is to absorb

the axial load that would otherwise pass through the shell near the vertical

edge of the cutout, as seen in Fig. 51, and to prevent bending of this

edge. Thus, the bifurcation load is increased ýubstantially. Lc fact,

the bifurcation load is no longer a conservative estimate of collapse

because random imperfections begin to play a significan1 role. The stiffeners

along the cutout edge drastically reduce the precollapse (! formations near

the cutout and thus make the cutout appear to be a smaller imperfection

than formerly. Consequently, because of the relative incijase in signifi-

cance of random imperfections, comparisons between test and theory for shells

"with reinforced cutouts show less agreement than do those with unreinforced

cutouts.
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Circular Cutouts: The STAGS computer program [ 48] has also been used for collapse

analysis - axiallj .ompressed cylinders with circular cutouts [ 88]. Figure 54

shows a discretized model. In [ 89] Starnes reports the results from a

large number of tests on cylinders with circular cutouts. He finds from the

experimental results that a parameter a = L//ya determines the shell behavior

where k is the radius of the circular cutout. For cylinders with relatively

small cutouts, this conclusion is verified by the analysis reported in [ 88].

However, for cylinders with sufficiently large 6utouts, the value oi . cannot

"alone determine the behavior of the shell. With two cutouts, for example,

the critical load must be zero when %/a = r/2. This will occur for a/h= 100

" . at a = 5T, and f,,r a/lh = 400 at a = lOi. Therefore, for cylinders with rela-

"ti-ely lirge cutouts, there must be separate curve branches for different a/h

values in the P versus a diagram. This was found to be the case when the

cI critical loads were compared for two cylinders with = 6. The cylinder

witi,':/= 0.3 and a/h = 400 carries a significantly larger axial load than

one with IL/a= 0.6 and a/h= 100.

Results obtained from the analysis with uniform shortening are shown in Fig.

55, together with a curve fitted to these computed data and the obvious

locati.ons of the end points of the curves. Test data for a cylinder with

two cutouts were provided by Starnes. These are also plotted in the figure,

• and it appears that experimental and theoretical results are in very close

agreement.

• It may be noticed also that virtually the same critical load is obtained

"- whether the cutout -is circular or square. Figure 56 shows the outward

displacement at the cutout edge (midlength) as a function of the applied

* axial load fo: two cylinders with a = 1.5, one with a circular and one with

56



a square cutout. Because of the difference in amplitude of the normal

displacement at the edge of the cutout, the result that a cylinder with a

square cutout can carry a.3 high a load as a cylinder with a circular cutout

is somewhat unexpected. The roason seems to be that larger displacements

at the edge of the square cutout allow a more significant stress redistri-

"bution to occur.

Collapse of Axially Compressed Noncircular Cylinders

Axially Compressed Elliptical Cylinder

Load vs. end shortening curves for perfect and imperfect elliptical cylinders

are shown in Fig. 57. The cylinder has a length of 1.0 in., a thickness

of 0.0144 in., and semiaxes of lengths 1.75 in. and 1.0 in. Young's modulus

7
is 10 psi and Poisson's ratio is 0.3. It is submitted to a uniform end

shortening with the edges free to rotate but restrained from moving in the

radial and circumferential directions. The load-end-shortening curve for

the perfect shell is that indicated by OABC. The other curves correspond

to imperfect shells with the imperfection shape given by

wi /t = -Isin (7Tx/L) cos (69) ( 31)
imp

In a test on this shell, sudden changes in the deflection pattern (buckling)

would be noticed at A, B , and C. Notice that the shell may carry more

load than the initial peak A indicates. While the primary buckling load A

is rather sensitive to imperfections, it appears that the second maximum B

is relatively insensitive to imperfections. Hence, it may be suitable as

a design limit.
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The curves Aw vs. S at the bottom of Fig. 57 are buckling modes cal-

culated by subtraction of displacement vectors obtained in two sequential

steps in end shortening and normalization of the result. Such a subtrac-

tion yields the shape of the fastest growing displacement component, which

might be interpreted as a buckling mode. As one traces one's way along

the load-deflection curve OABC, the axial stress in the shell is constantly

* being redistributed by the local growth of normal displacement. For

example, early in the load history the most rapid growth of normal displace-

ment occurs at the point labeled S =2.2, the area of minimum curvature.

This growth relieves the axial stress there and permits loading above the

initial peak A. At point B the most rapid growth of normal displacement

is about halfway between the ends of the minor and major axes. This growth

relieves the axial stress in the corresponding area and thus permits load-

ing to an even higher peak, C, where the rapid growth of normal displacement

occurs near the end of the major axis in an area of relatively large curvature.

The results shown in Fig. 57 were obtained with use of the STAGS computer

program [ 48].

Axially Compressed "Pear-Shaped" Cylinder

A similar stress redistribution phenomenon occurs in the case of the non-

circular cylinder, ha3l of w. i h is depicted in Fig. 58(a) The behavior of

this shell subjected to uniform end shortciing was also investigated with

the STAGS code [ 48]. The theoretical results given in Figs 58(b-d)

are based on a two-dimensionally discretized model with 45 circumferen-

[, tial nodes and 9 axial nodes covering one-half of the circumference and

- one-half of the length.
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As seen from Fig. 58(b) the linear range in this case represents less

than 1/30 of the total load history of the shell. The rapid change in

slope of the load-deflection curves at about P=I00 1b corresponds to

rapid growth in normal deflection (buckling) of the flat portions of the

shell. Associated with this rapid growth in w is a redistribution of

the axial stress so that the curved portions begin to take up a larger

percentage of the total axial load P. As more and more of the axial

load is borne by the curved portions, the slope of the load-end-shortening

curve increases until just before collapse, at which load the entire

structure fails. Figures 58(c) and 58(d) show the circumferential

distributions of normal outward displacement w and axial compression/length

N at the shell midlength for P-=1164 lb. At this load both w and Nx x

are growing very rapidly with P in the curved portions 0 < 9 < 450

and 900 < 8 < 157.50.

The rather complex behavior in this case indicates the need for a flexible

strategy for calculation of collapse loads of shells. Small load steps

and frequent refactoring of the equation system matrix are required in the

load region between 100 and 200 lb, even though the displacements are rela-

tively small in this range. Farther out on the load-end-shortening curve,

where the displacements are larger, rather large load steps can be used and

few refactorings are necessary. Just before collapse many small load

steps and frequent refactorings of the stiffness matrix are again required.

Efficient use of the STAGS code, or any code for predicting nonlinear be-

havior of shells, requires a sophisticated iteration strategy built into

;* it and a well-trained user to take advantage of this strategy.
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°O Axially Ccmpressed Cylindrical She] 1 With Local Load Path Eccentricity

- Practical shell structLires are often built up of several parts fabricated

at diff-_rent places. These parts must be assembled to create the finished

product. The mating of the various parts often gives rise to instability

problems which do not exist for thi- separate pieces, the design of which

may not have included consideratior of these "global" problems. Figure 59

represents such an assembled shell structure. It is a missile interstage

with two sections, a forward adaptor made of composite material from mis-

sile station (M.S.) 170.0 to M.S. 175.4, and an equipment section made of

'r-. aluminum from M.S. 175.4 to M.S. 182.8. There is an aluminum primacord

backup ring with a cavity for primacord at a notched separation joint at

M.S. 177.0. This ccmplex cylindrical shell structure must withstand axial

compression during launch. The most severe problem of instability arises

from inward excursion of the axial load path in the region between M.S.

175.4 and M.S. 177.6, shown enlarged in Fig. 60. This axisymmetric inward

excursion causes axisymmetric deflections shown in Fig. 61, which was

"obtained with use of the BOSOR5 computer program [ 47]. Failure of the

complex structure is due to elastic-plastic collapse in the short, thin

(t=.07 in.) aluminum section located at M.S. 175.9 and denoted Segmen

in Fig. 60. In a test of this structure failure occurred at a load within

0 one percent of that predicted in the analysis.
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1 • Section 3

"BIFURCATION BUCKLING IN WHICH NONUNIFORMITY

OR NONLINEARITY OF THE PREBUCKLING STATE IS

IMPORTANT

Introduction

All ot the examples in this section involve axisymmetric shells. The

- feature that unifies these examples, that makes it logical to include

them all in this particular section, is the rajor influence of certain

nontrivial aspects of the prebuckling solution on predictions of bifurca-

tion buckling loads. Whereas the emphasis in the last major section was

_ on nonlinear collapse rather than bifur,:ation buckling, the emphasis here

"r." is on bifurcation buckling with nontrivial prebuckling behavior. As was

"-. pointed out before, bifurcation from a nonlinear prebuckling state is of

praztical interest only in configurations with a great deal of symmetry.

"That is why the applications here all involve axisymmetrically loaded shells

"•f revolution.

There are two principal kinds of influences that the prebuckling !tate has

on the bifurcation buckling load& (1) The prebuckled loaeed shell has a

"-" different shape from the unloaded shell; given a membrane preftress dis-

tribution this new shape may be more likely oi less likely to lose its

stability than the original undefcrmed shape; (2) The prebuckling membrane

stress distribution is an important factor; given a prebuckled shape of

the shell, the membrane stress distributions calculated from linear or

nonlinear analysis and membrane or bending shell theory may drastically

affect the predicted bifurcation buckling load and mode shape.
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In this section many examples will be given in which the combination of these

two influences is present.

Summary

The section opens with several examples of nonsymmetric bifurcation buckling

in the neighborhood of an edge. It is shown that this edge buckling is due

primarily to local circumferential (hoop) compression which is greater near

the edge where local meridional bending is significant than remote from the

edge where a membrane prebuckled state prevails. Many figures follow

which involve a closely related situation -- nonsymmetric bifurcation

buckling due to localized hoop compression sometimes near an edge and

*sometimes not. One of the most important effects demonstrated is the

"""_eat influence of prebuckling axisymmetric shape change on predicted bi-

"furcation buckling loads. Next, several examples are given of nonsymmetric

bifurcation buckling of shells of revolution in which meridional tension

is combined with circumferential compression. Particular emphasis is given

"to elastic-plastic bifurcation buckling of internally pressurized tori-

spherical shells, a complex problem for which both prebuckling shape change

and nonlinear material properties greatly affect the prediction of the

"critical load. The chapter closes with an example in which the nonsymmetric

bifurcation buckling load is near the axisymmetric collapse load. The

*. results of experimental and theoretical investigations of an elastic

.4 idealized model of a water tank are compared with a more complex elastic-

• 0plastic model in which certain fabrication processes such as cold bending

"and welding are included in the simulation of failure of the large steel

water tower illustrated in Fig. 3.
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, Bifurcation Buckling due to Edge Effects

and Localized Circumferential Compression

Bifurcation Buckling Due to Edge Effects

Cylindrical Shell Under Axial Compression: Figure 62(a) shows the postbuckled

state of an axially compressed cylindrical shell. In Fig. 62(b) the predicted axi-

symmetric prebuckling state and nonsymmetric bifurcation buckling mode

corresponding to 18 circumferential waves are shown on either side of a dis-

cretized generator. The generator of the lower half of the cylinder is divided

.; into two segments. Nodal points have been concentrated in the relatively

short edge segment in order to obtain converged solutions for the pre-

buckling state and the bifurcation buckling load and mode. The solution was

obtained with the BOSOR4 program [ 14]. Further details on this case are

given in Figs. 2 9 to 32 and associated discussion in Ref.[430]. In near-perfect

shells edge buckling occurs before general instability remote from the

edge and before axisymmetric collapse near the edge because of the narrow

"band of hoop compression combined with the axial compression thac occurs

only in the edge "boundary layer." This hoop compression as well as nonlinear

behavior due to moderately large axisymmetric prebuckling meridional rotation

cause an approximately 20% reduction in the bifurcation buckling load

belcw the classical value of N .605 Et2/R.•'.'."cr

Such edge buckling is often not observed in axially compressed very thin

elastic cylindrical shells because of the presence of initial random im-

perfections which act as triggers for buckling at isolated locations any-

where in the shell. The axial load corresponding to the edge buckling mode

e
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is not especially sensitive to initial imperfections. However, the axial

load corresponding to the classical buckling formula, N = .6 Et2/R, is
cr

extremely sensitive to initial imperfections. Therefore, a small imperfec-

tion located at some point remote from the edge will trigger buckling at

a lower axial load than will a larger imperfection located within the

bending "boundary layer" near the edge.

Thicker metallic cylindrical shells that buckle in the plastic range exhibit

axisymmetric collapse which initiates at the edges as shown in two of the

photographs inserted in Fig. 6. Bifurcation buckling does not occur before

•.0 - axisymmetric collapse in these cases because the axisymmetric prebuckling

hoop forces that resist changes in diameter are diminished due to yielding,

0 the amplitude of the edge bulge increases faster in the plastic region due

to the increase in Poisson's ratio to 0.5 for incompressible flow; and

the doubly curved bulge that develops near the edge resists nonsymmetric

buckling.

The load -t which these thicker shells collapse can be fairly accurately

predicted because the shells, being thicker, are easier to make more perfectly;

"because the material softens so drastically within a fairly small range of

stress; and because the critical mode of failure-axisymmetric collapse near the

edges-resembles a built-in non-random predictable, prebuckling imperfection:

local axisymmetric bulges that grow near each end of the cylinder.

Externally Pressurized Spherical Caps with Edge Rings: Figs. 63- 68 and Table 3

pertain to this section. Bifurcation buckling -s due to the narrow band

"of circumft±:.Lial compression that develops near the edge. Figure 63 gives

comparisons between theoretical results obtained with use of the BOSOR4
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- computer program [14] and experiments performed by Wang 93]. The

"normalizing factor p is the classical buckling pressure of the complete

spherical shell. Figure 64 shows the prebuckling distributions of

circumferential compression for two models of Wang's test specimen, and Fig.

"65 gives predicted nonsymmetric bifurcation buckling modes corresponding

to two values of edge moment M , which was applied in the tests by hanging

weights from a small projection attached to the edge ring.

S"-- There are two factcrs other than external pressure that influence the ampli-

* tude of the local a:-isymmetric prebuckling circumferential compression:

the eccentricity (elfe2 ) of the edge ring and the fixed edge moment M
2. 0

The influence of ring eccentricity is indicated in Fig. 64. The test,

described in [ 93], most resembled case 1. In case 2, the shell is con-

sidered to penetrate the ring and terminate at the ring centroid. In the

* two cases shown, the external pressure is assumed to be reacted by an

axial load acting through the ring centroid. Buckling occurs at the pres-

sures p indicated, and the predicted buckling pattern with 18 circumferen-
Pcr

tial waves is concentrated in the area near the edge, where the hoop stress

resultants are maximum compressive. In this case, the predicted buckling

pressure is most sensitive to the axial component e2 of the stiffener

eccentricity. Because of this component, the meridional resultant N
10

. produces a clockwise moment about the ring centroid, which acts to reduce

the destabilizing hoop compression near the edge of the cap. Notice that

*. the local hoop compression distributions corresponding to the two very dif-

ferent values of critical pressure, Pcr(Case 1) = 0.619, Pcr (Case 2) 0.357,

a.: very similar, providing a clue that it is this quantity that has the

greatest influence on the bifurcation buckling load and not the meridional

compression or the prebuckling shape change of the spherical cap.
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For cases such as this in which bifurcation buckling is due to a localized

effect, the predicted buckling load is often very sensitive to seemingly

insignificant changes in the structure or in the analytical model of it.

SThe results in Fig. 64 provide an example. If the analyst nerceives that

'- such a buckling phenomenon may occur, for instance, if he performs a

stress analysis and notices local regions of destabilizing compressive mem-

brane forces, he should take great care with the modeling. Local load path

eccentricities, meridional discontinuities, prebuckling shape change ef-

fects, and prebuckling geometric and material nonlinear behavior should be

faithfully modeled and included in the stability analysis. If a stress

analysis reveals a local band of circumferential compression, then a bifur-

"- cation buckling analysis should be performed. The minimum buckling load will

generally correspond to a rather high number of circumferential waves, as

shown in Fig. 65. A reasonably accurate estimate, at least to within an

order of magnitude, of the critical circumferential wave number can be cal-

culated from the assumption that the axial and circumferential wavelenths

of the buckles will be of approximately the same lengths. If the analytical

model of the structure is reasonably good, the predicted buckling load

should be fairly close to test loads. Sensitivity to imperfections is much

less important in such cases because the structure has a built-in local im-

perfection that is generally large compared to any random manufacturing er-

* rors. Note that the local stress concentrations implied in this discussion

may cause some plastic yielding of the material. Bifurcation buckling loads

will be overestimated if this material nonlinearity is neglected.

Figures 66- 68 and Table 3 reveal the effect of ring size on predicted bifurca-

•.- ' tion buckling pressures of spherical caps of various depths. The theoretical
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results were obtained with an early version of BOSOR. The ring has a

* . square cross section and its centroid is assumed to coincide with the edge

-'- of the spherical cap. In Fig. 66 the normalized critical pressure isS~1/2
* -.. plotted versus a rather complicated ring area parameter A* = (A/at)(a/t)

through which the dependence of the normalized buckling pressure pc/p
crcl

on radius-to-thickness ratio a/t is almost eliminated for a given value

of shell shallowness parameter [ =12(1-v 2)]/4 (a/t) 1/2. The dependence

of Pcr/P on X is weak even though the predicted meridional bifurcation
crcl

mode shape and critical circumferential wave number vary a great deal. There

is a strong dependence of the pcr/Pcl on the degree of edge fixity, A*.

• .- The critical pressures for A*- agree with those calculated by Weinitschke

"94] and Huang [ 95] for clamped caps. The degree of reduction exhibited

by Wang's tests below the theoretical critical pressures for perfect shells

is reasonable for spherical shells with similar shallowness parameter X as

seen in Figs. 30 and 37.

Figure 67, which corresponds to a cap with a/t=100, X =16, shows the pre-

buckling state at the critical pressure ratio p = pcr/PcI for various values

of edge ring parameter A* and bifurcation buckling modes for two extremes,

"Ak=0 (free) and A*t- (clamped). The mode shapes have peaks that coincide

"with the peaks in the circumferential compression.

Buckling of Shallow and Deep Spherical Caps: Figures 63 - 67 apply to

shallow caps in which the edge angle a is less than about one radian. The

* most important factors influencing the bifurcation buckling pressure for

such configurations are the prebuckling hoop compression just in from the

edge and the stiffness of the shall wall. The buckling mode is an edge mode

"of the type shown in Fig. 65 for a rather high value of X (X=25) and in
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Fig. 67(d) for a lower value of X (X=16). The buckling modal displace-

". ment is small at the edge. For shallow caps supported as shown in Fig. 67

there are two reasons why the buckling displacement almost vanishes at the

edge for a < 0.88 rad: (1' with small edge rings a band of stabilizing

hoop tension develops with increasing pressure as shown in Fig. 67(b); (2)

"with large edge rings the area moment of inertia of the ring prevents non-

"symmetric buckling.

A different kind of buckling occurs if the edge ring is reasonably small and

if a is greater than about 1.2 radians. With a > 1.2 radians and A* < 16,

the nonsymmetric buckle pattern of a spherical shell is almost inexten-

"sional with n = 2 circumferential waves. The maximum buckling displacement

occurs at the edge where the ring ovalizes. The buckling load can be very

small compared to the classical load, a phenomenon that is pointed out by

Cohen [ 96] in the case of axially compressed cylindrical shells with ring-

supported edges. As seen from the results listed in Table 3, for

"•* 6.4 the inextensional mode occurs only for 1.57 < a < 2.26. With

a = 2.65 and 2.92, "classical" type buckling occurs and the buckling load

is almost independent of n. For these cases the ring is of such a size

that the prebuckling equilibrium state is almost exactly a uniform mem-

brane contraction. When A* > 25.6 or when the very deep shell is hinged at

the edge, buckling is again an edge phenomenon.

Figure 68 shows buckling modes of spherical shells with a/t = 100,

at= 2.65 radians, and A* = 0.4, 6.4, and 25.6. The figure illustrates the

"L "different types of buckling reviewed next in connection with Table 3.
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Table 3 lists dimensionless backling loads P and corresponding circum-cr

. ferential wave numbers n for shells with a/t = 100 and 0.22 < a < 2.0, radians.

The shells are supported as shown in Fig. 67 and A* = 0, 0.4, 1.6, 6.4, 25.6,

and -. The value A* = • corresponds to clamping at the edge. Buckling loads

are also shown for shells hinged at the edge.

Inspection of Tabl 3 reveals that, in the range of ,arameters investigated,

"four types of buckling occur: axisymmetric collapse, n = 0; edge buckling

* -.• n > 2; inextensional buckling, n = 2; and "classical" bucxling (p almost
cr

independent of n). Table 3 is divided into regions according to the type

-.- ' of buckling behavior exhibited. When the shell is very shallow (a = 0.22)

it collapses axisymmetrically for all edge conditions. There are values of

aL, such as a = 0.33, for which the type of buckling depends on the degree

of edge fixity.

When A* > 1.6 and a = 0.33 the shell buckles into two waves. The buckle pat-

tern, while not confined to a narrow region near the edge, does involve

considerable stretching of the middle surface, and the buckling of these

shallow shells might be classified as an edge phenomenon. The buckling of

shells with t = 0.495 and 0.88 ( = 9 and 16) is an edge phenomenon for all

"types of edge conditions. Prebuckling and buckling displacements are shown

for the \ = 16 case in Fig. 67, which was discussed previously. It is

seen that the buckling loads associated with edge buckling are not strongly

dependent on the edge angle CL. Buckling loads calculated for a = 0.495 and

*p Ca = 0.88 with A* - agree with the loads for clamped caps calculated by

Huang in Ref. [ 95].
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Buckling Due to Localized Hoop Compression

The examples in this section are similar to those of Lhe last, the differ-

ences being that buckling is not necessarily at an edge and in several of

"the cases tbc nrebuckling change in shape of the shell has a major influence

on the bifurcation buckling load. Fist, thermal buckling of cylindrical

shells will be described. The buckling of an internally pressurized ellip-

. soidal rocket motor dome will be discussed. In both of these problems pre-

buckling shape change has a significant influence on the predictions of bi-

furcation buckling.

An example will follow which is similar to that shown in Figs. 59-61; the

* localized hoop compression is caused by an axisymmetric inward excursion of

"the load path. The difference here is that failure is due to nonsymmetric

bifurcation buckling ratner than axisymmetric collapse.

Thermal Buckling of Cylindrical Shells

Introduction: In the problems examined in this section the most important single in-

fluence on bifurcation buckling is the axisymmetric change in shape of the cylinder

in the prebuckling phase. This shape change is most pronounced just where

"the localized destabilizing axisymmetric hoop compression is maxix'-n and i.s

" a stabilizing influence, since its effect is to transform a developable sur-

%". face into a iiore stable doubly curved surface, as will be seen. The discus-

"sion here cox.-s from Ref. [ 97].

"Two problems are treated: an "infin-te" cylinder heated uniformly over half

";,-s length and a clamped cylinder with an axial thermal gradient near the

edge. In both cases the cylinders are free to expand axially. The cylinder
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O heated along half of its length does not buckle at any temperature because

the destabilizing effect of the circumferential band of hoop compression near

the thermal discontinuity is more than counteracted by the stabilizing effect

of the shape change of the cylinder as it is heated. Predicted buckling

temperatures of clamped cylinders are strongly dependent on details of the

thermal gradient very close to the clamped edge. Agreement with test results

is obtained only if prebuckling meridional rotations are included in the

stability analysis.

Thermal discc-tinuities, or rather high thermal gradients, arise

at "hard points" or heat sinks such as ring stiffeners and bulkheads. Junc-

tures between dissimilar naterials or boundaries of an environment, such

as the surface of a cryogenic fluid, also give rise to thermal stresses

which vary rapidly in the axial direction. Several authors [ 98 - 103]

have treated problems of this sort. Hoff [ 98] calculated buckling loads

for uniformly heated simply-supported cylinders; Johns [ 99] did the same

for uniformly heated clamped cylinders; and Anderson [ 100]and Chang and

Card 1 101] calculated buckling loads for cylinders under combined axial

compression and nonuniform heating. In the work of Hoff and Johns, it is

assumed that the temperature distribution is axisymmetric and that no axial

restraint exists. The predicted buckling is caused by hoop compression near

the simply-supported or clamped edges, which decays rapidly with increasing

distance from the edge. In the work by Anderson [ 100] and by others at

Stanford University [ 104 - 106] the temperature either varies around

the circumference or the cylinder is assumed to be rigidly fixed at the

boindaries. Buckling in these cases arises because of axial thermal stresses,

not frou hoop stress- This section iq not concerned with this latter

class of problems, examples of which will be described later.
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* The purpose of this section is to describe the effect of prebuckling deforma-

tions on the predicted buckling temperature of axisymmetrically heated

•- cylinders which are not axially restrained. Two problems are treated: buckling

of a cylinder with a sudden change in temperature along its length, and

buckling of a cylinder clamped at its edges and heated along its length

with steep gradients near the end supports. In both cases the cylinder

is free to expand in the axial direction.

Buckling of Cylinder Heated Halfway along Length: Figure 69 gives the

- •geometry, w-.terial properties, temperature distribution, and prebuckling

.-'. solution. The cylinder is shown to be 2000 in. long and 200 in. in diameter.

-.. •. The cylinder length is immaterial, however, provided that it is large com-

pared to twice the axisymmetric boundary-layer length (about 60 in. in

this exarmple) and large compared to the longest buckling wavelength (about

50 in., as seen in Fig. 72(a)). In the computerized analysis "symmetry"

conditions are applied at the ends of the cylinder in order to simulate

.•' infinite length. The prebuckling solution shown in Fig. 69 is given by

Fiugge [ 107]. Tf the cylinder is to buckle, such behavior would be

caused by the narrow band of hoop compressive stresses occurring adjacent

to the temperature discontinuity on the hot side. The prebuckling solu-

tion for a uniformly heated cylinder simply-supported at the location of the

- temperature discontinuity is similar: the amplitude of the hoop stress is

doubled, no solution exists, of course, for x < 0, and the 1/2 in the

expression for w in Fig. 69 becomes unity.

In Ref. [ 102] it is mentioned that the uniformly heated simply-supported

cylinder analyzed by Hoff [ 98] apparently does not buckle at any tempera-
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ture. This rather odd prediction results only if the prebuckling deformations

of the shell are accounted for in a consistent manner in the stability analy-

sis. In Ref. [ 102] it is suggested that perhaps the moderately large

rotation limitation used in the shell theory is responsible for the peculiar

result. Because of the investigation described here, it is now felt that

the prediction of no buckling is physically realistic. As the shell is

A heated the compressive hoop stresses grow, it is true. However, the gene-

rators become curved in the neighborhood of the compressive stresses and

this curvature "stabilizes" the shell. Apparently, as the temperature in-

creases further, the further increase in curvature more than makes up for

the increase in hoop stress, so that the shell becomes more, not less,

stable. Mathematically this behavior is reflected in the growth of the

stability determinant with increasing temperature for any circumferential

wave number, n.

The case shown in Fig. 69 behaves in a manner analogous to the simply-

supported uniformly heated cylinder. Figure 70 shows the stability deter-

minant as a function of increasing temperature rise for n = 14 circumferen-

tial waves. (This is the critical -ave number if prebuckling rotations 8

0

are neglected in the stability analysis.) These results were calculated

with the BOSOR4 computer program [ 14]. The stability determinant is the

determinant of the coefficient matrix of the equation shown in Fig. 70.

This equation is discussed in Ref. [430] . (See Eq.76 in Ref. [430] .)

The stability determinant exhibits the monotonically increasing behavior

only if the prebuckling deformations are accounted for. In order to check
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the correctness of the theory in which the shape change of the shell is

accounted for in the stability analysis, a model was constructed which

treats the prebuckling shape change as independent of the temperature,

a sort of given, fixed imperfection. Buckling analyses of several dis-

torted cylinders were performed, where the prestress hoop compression is

given by the distribution shown in Fig. 69 and the initial distortions

or imperfections represent the prebuckling shapes corresponding to vart .s

amplitudes T of temperature rise. Figure 71 shows results for three
0

"imperfect" cylinders, the properties of which are given in Fig. .69. The

* . imperfection shape is given by the expression for w in Fig. 69 with

0 0 0
- . T = 0 , 2500 , and 5000°. The eigenvalues were determined from an analy-

0

sis in which further prebuckling meridional rotations from the initial

imperfect state are neglected. The critical circumferential wave number n

increases as the prebuckling meridional curvatize increases, and the curves

never cross, indicating that at any wave number the stability determinant

will never vanish as temperature is increased, provided that the shape

change of the cylinder is included in the equations governing stability.

Note that it has not been proven beyond any doubt whatsoever that such is

the case. The results obtained herein given a strong indication that

huckling will nnt occur. Furthermore, te physically realistic explanation

given previously supports this hypothesis.

"Figure 72 sbows the prebuckled shapes of the shells and the buckling mode

shapes. Both the axial and circumferential wavelengths of the buckle pattern

become shorter as the degree of prebuckling distortion increases. These

results apply to a shell with radius-to-thickness ratio of 100. Similar

results (with higher wave numbers n and shorter axial wavengths) were

obtained for a/t = 500. It seems probable that no buckling will occuc for

any simply supported cylinder heated as shown in Fig. 69. It has not
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- been shown that buckling will not occur independent of the axial distribu-

.- tion of temperature. Such a proof is beyond the scope of this section.

Buckling of Axisymmetrically Heated Clamped Cylinder: Johns [ 99, 108]

perform.ed tests and obtained theoretical results. The effect of prebuckling

deformations is not included in the analysis of Ref. [ 99]. Figure 73

shows a clamped cylinder with the same a/t as that tested by Johns, et al

108]. Symmetr-• conditions are applied at 500 in. from the clamped end,

1/2a distance approximately equal to 10(at)I. Nodal points are concentrated

in the edge zone 100 in. in length where prebuckling and buckling displace-
V.-

ments vary rapidly. Two buckling modes and critical temperatures are given

in Fig. 73: the one with 140 circumferential waves corresponds to a case

in which the prebuckling rotations •o are retained in the stability analy-

"sis, and the one with 100 circumferential waves corresponds to 8 being set
0

[-- to zero in the stability analysis. This latter solution is about half of

that computed by John-. The solution including prebuckling rotations is

only half of the experimental buckling temperature obtained by Johns.

The large discrepancy between the test and the theoretical results given

in Fig. 73 for uiniform heating can be explained by the presence of th, Ial

gradients near the boundaries of the cylinder. Figure 74 shows several

* gradients, including the gradient measured by Johns, Houghton, and Webber

. 108] and another measured by Ross, Hoff, and Horton in tests reported

in Ref. [ 104]. These gradients arise because of the relatively large

"4 heat sinks present at the clamping supports. Also shown in Fig. 74 are

the test configuration, material properties, and circumferential temperature

distribution for the Johns' test 108, 109].
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.gure 75 shows buckling temperatures calculated for the Johns' cylinder

6 o
(a 1.0 in., t = 0.00275, E = 27 x 10 psi, V = 0.287, a = 11.5/ C with

"the various gradients and with and without the effect of prebuckling rotation

S*o The "best"solution shown in Fig. 75, in the sense that the most accu-

rate analytical model is used, is represented by the curve labeled "Johns'

Gradient," 3o0 0. The critical temperature, 280 C is still somewhat below
0

the test result, a disturbing finding since one suspects that although

this edge buckling phenom-.non is not very sensitive to initial imperfections,

any imperfections in the hell should cause the opposite situation to occur.

In order that this discrepancy be explained, a further inquiry into the

-hape of the edge gradient was made [ 109]. It was found that the tempera-

*ture at x = 0 was not measured, but was extrapolated from the readings

labeled@, G, ( in Fig. 74. Furthermore, the two thermocouples

"on the bulkhead, labeled and ) in Fig. 74, measured temperature

rises of 9, 16, and 8.7 0 C (mean va' :ýs for 7 tests). Therefore, it was

feit that the tenperature at x = 0 might have been somewhat less than 47%

"of the maximum, as indic-ted in Fig. 74. A sensitivity study was performed

in which the temperature at the edge was varied from 20% to 47% of the maxi-

.-mum value. The trial gradients and analytical results are shown in Fig. 76.

Circumferential waves corresponding to the critical temperature are shown

* in pa.entheses. The effect of prebuckling rotation. becomes increasingly

significant as the steepness of the gradient increases. The lowest values

"on the curves are the same as the minima of the curves labeled Johns'

" Gradient in Fig. 75. Test and theory are brought into agreement by a

"s-nall and physically reasonable adjustment of the edge temperature.

•. .76
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In Webber's letter [ 109] other reasons were given for possible discrepancy

S-: between text and theory: buckling was measured by dial gages located along

• the generator labeled "290°C" in Fig. 74, not along the generator where

the gradient was obtained. The critical temperature was recorded when these

gages indicated large out-of-plane deflections. This happened a short time
=C after the onset of buckling. Also, the shell thickness varied from 0.0025

to 0.0030 in., whereas a nominal value of 0.00275 has been used in this

analysis.

Results corresponding to gradient 1 and gradient 2 are included in Fig. 75

in order to provide more data on the sensitivity of thermal buckling loads

to details in the shape of the edge gradient. The Ross edge gradient is

given in Fig. 74 to demonstrate the possibility of rather large nonuniformi-

ties in experimental temperature distributions. In order that good correla-

tion L-tween tests and analytical predictions be obtained, it is clear that

temperature distributions have to be carefully controlled and measured in

tests and variations accounted for in analysis.

Buckling of an Internally Pressurized Rocket Fuel Tank

Figures 77 - 79 pertain to this section. The geometry of the problem

is shown in Figs. 77 and 78. Uxaer small internal pressure the portion

of the rocket fuel tank depicted in Fig. 78 is drawn radiall', inward as

shown greatly exaggerated in Fig. 79 (a), resulting in development of a

narrow band of hoop compression that might lead to bifurcation buckling.

.7igure 79 (b) shows a bifurcation buckling mode piedicted with use of

BOSOR4 [ 14]. The modal normal displacement component w (S,8) varies
b

around the circumference as Wb(S) cos 909. The prediction sh.in in Fig.

79 (b) corresponds to bifurcation from the linear prebuckled state

with prebuckling meridional rotation $ neglected In che stability analysis.
77
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At fop of Fig. 78 is shcwn a bifurcation buckling mode predicted

-- with use of linear theory. The modal normal displacement compcnent wb (s,e)

varies around the circumference as wb(s) cos 90e.

This is a problem for which use of linear theory in the prebuckling phase

* '. of the analysis is inadequate. As the internal pressure is increased the

ellipsoidal dome changes shape. The hoop stresses are redistributed and grow

more slowly than linearly with pressure, as indicated in the bottom part of

"Fig. 78. As the internal pressure p is increased, the hoop resultant

becomes tensile in the region where linear theory predicts bifurcation

buckling to occur, and the peak hoop compression initially increases more slowly

than predicted by linear theory, eventually reaching a maximum value of

Sabout -800N/mm at a pressure of 1.4 N/mm2 , after which it denreases with

further increases in internal pressure. Thus, the prediction with non-

linear prebuckling effects included is that bifurcation buckling will not

I occur at all. More will be written in a later section on buckling of

internally pressurized torispherical shells, which exhibit similar behavior.

Local Buckling at a Field Joint in a Large Rocket Payload Shroud

In Fig. 5 is illustrated a local failure of a large corrugated payload

shroud which was subjected to axial compression and bending. Most of Fig.
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5 is repeated in Fig. 80. The nature of the problem is similar to the

complex missile interstage shown in Figs. 59 - 61: The failure is trig-

gered by the axisymmetric inward excursion of the axial load path at Station

468. In this case, however, buckling initiated in the elastic range of

material behavior and the failure was due to nonsymmetric bifurcation rather

than axisymmetric collapse.

Figure 80(d) shows why buckling occurs. Under the axially compressive test

load the field joint ring at Station 468 rolled over a small amount because

the doubler above it was slightly thinner than the doubler below it. Figure 81

displays the model analyzed with use of the BOSOR4 program [14]. Figure 82 (a) shows

the distribution of axisymmetric prebuckling radial displacement w for 60 inches

on either side of the field joint at Sta. 468. Most of the cylindrical shell

moves radially outward due to the Poisson effect. However, in short regions

on either side of the field joint, where the external corrugations are

cut away, the axial load path is deflected inward from the neutral axis of

the cross section of combined corrugations and skin to the middle surface

of the skin and doubler. This inward deflectinn of the load path creates the

localized hoop compression that causes nonsymmetric bifurcation buckling

in a mode shown in the photograph in Fig. 80 (c) and plotted in Fig. 82 (b).

Because of the short axial length of the circumferentially compressed region,

the critical mode has a rather large number of circumferential waves (n = 35).

Further details on this problem are given in Ref. [3].
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Bifurcation Buckling of Spherical Shells

Under Meridional Tension Combined with Hoop Compression

Axial Load Applied Uniformly Over Latitude with Finite Radius r1

Figure 83 demonstrates the buckling phenomenon. Tension is applied through

the vertical rods which are attached to rigid spherical mandrels inside

the shell. The lower hemisphere is completely supported by an interior

*:. mandrel and a little less than 450 of the top part of the upper hemisphere

is so supported. A single buckle (a) initially forms at some axial load,

which can be further increased until a multi-lobed buckle pattern (b)

develops around the entire circumference. Bifurcation buckling is due to

* the band of hoop compression that develops between the supported regions.

The buckles are elongated in the axial direction bedause of the meridional

tension. Yao [ 110] studied this phenomenon both experimentally and

analytically and Bushnell [ 111] performed a computerized nonlinear analy-

"sis. One of Yao's post-buckled specimens is showiy in Fig. 84.

Table 4 shows critical loads r V cr(l - V 2)Et2 for 0.05 < (11 < 1.16 rad

and R/t = 100, 455, and 1600. (rl, Olc 2 , V are identified in Fig. 85.)

Values for c2 are given in thb footnote. Spherical segments of this geom-

etry buckle near the edge at a when a 1 is less than about 0.9 rad. The

°.: buckling loads are independent of a when it is greater than the values

specified in the footnote of the table. The critical loads in the column

headed "linear" are calculated from stability equations in which the pre-

buckling stress resultants, NI0 and N20 are given by membrane theory values

2N = N = rVR/r and the prebuckling meride-onal rotation 0 is set equal"10 20 o
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* to zero. The critical loads in the column headed "nonlinear" are ob-

tained from the same stability equations, except that N1 0 , N2 0 , and

*. are calculated from the nonlinear equations presented in Chapter 2. The

values of n when a > 0.25 correspond to the minimum r1V cr(n). The mini-

mum is included in the ualculations for a < 0.20. Columns are also included

in which r1V is calculated from a "semiempirical" equation to be given.

Tne following facts emerge from an inspection of Table 4c

1) The critical load P = 27Tr V increases as r increases.
cr 1cr1

2) The linear theory can be applied over a larger range of a for shells

with greater R/t. The values of rlIcr for the nonlinear theory are always

greater than those for the linear theory.

3) When a1 < 0.2, the nonlinear theory predicts buckling into a greater

* number of circumferential waves than does the linear theory. This discrepancy

increases with increasing thickness.

. 4) The value of r V and t -ý corresponding value of n approach ap-
1cr

propfiate limits as 1 a 0, as shall be seen.

In addition, the solutions for R/t = 455 and 1600 with a1 = 1.16 and a2 = 1.57

rad are qLite close to the theoretical results of Ref [ 110]. Yao obtained

2 2buckling loads r1V (1 -V )/Et = 0.591 and 0.553, respectively, for these

cases.

Figure 85 shows the axial prebuckling displacement u /t, the normalized stress re-
vO

2
sultant N (1 - V) (R/t)/Et, and the modal normal displacement w/t plotted

20

• vs s/(Rt) for l = 0.7 and R/t = 100 and 1600. The maximum displacement

in the buckling mode occurs where N is maximum compressive. it is seen
20

that this maximum compressive hoop stress is fairly close to the local value

* predicted by membrane theory; this is also shown 4n the figure.
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" It is possible to derive simple approximate formulas for the buckling load

rV and the corresponding wave number n. These formulas are derived with
cr

the help of physical reasoning and experimental or computer-generated data.

"Such a formula for the buckling load is

2 2 2 1/2
r.1 Vcr( - V )/Et = 0.622 sinl + 3.1/(R/t)I] ( 32)

The number of circumferential waves in the buckle pattern can be preadicted

accurately by means of the equation

n 1.84(PR/t) 1/2 sin[a + 4.2/(R/t)I/2( 33)

Equal-ion 32 is derived through the following assumptions: (1) Buckling

0 2
occars when the maximum negative value of N2 0 (R/t)(1-V )/Et = 0.622, inde-

pendent of shell geometry. (2) The point at which N20 is maximum compres-01/2

sive is located d distance 3.1(at) 1 from the edge at el' and its value at

that point can be determined accurately from membrane shell theory.

Equation( 33) is derived through the following assumptions: (1) The maxi-

mum normal displacement w in the buckling pattern occurs where N20 is maxi-

mum compressive. (2) The circumferential wavelength is proportional to

1/2
(Rt)

0

"There is a current important engineering problem to which this type of buck-

ling of spherical shells applies. Very large spherical tanks feri Ll.ansport-

ing liquid natural gas (Figs. 86 (a,) are supported on short cylindrical

shells as illustratee. in Fig. 86(b). When the tank is less than half

"filled the weight of the liquid natural nas creates axial tension that might

cause bucklinq of the type shown in Figs. 83 or 84.
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, Pedersen and Jensen [ 112] have studied this problem. Fig. 87 shows

"results from their analysis.

Axial Load Applied at a Point

Figure 88 shows the post-buckled state of a very thin spherical shell

with axial tension applied at a point rather thpn over a finite radius rI.

Table 4 lists critical loads for small cx1 and al = 0. As might be ex-

pected, nonlinear prebucklizg effects are very important in this case.

From Table 4 it is seen that for a < 0.05 rad the critical loads in

the column headed "nonlinear" are much higher than those in the column

"headed "Linear."

3Table 5 gives dimensionless loads PR/Et and wave number n as func-

3"tions of R/t. For practical purposes, PR/Et is independent of R/t when

R/t is greater than about 500. In the entire range R/t > 50 the buckle

"- ,-.- pattern has 8 circumferential waves.

Figure 89(a) shows the dimensionless vertical prebuckling displacements

"2
u /t and the dimensionless circumferential stress N (1 -V )(R/t)/Et for
vS 20

the loads at which bifurcation occurs in 8 circumferential waves. The

* values of R/t used in the calculations are 50, 100, 455, 160C, and 3040.

"isplacemenrs and stresses are plotted vs a dimensionless arc lengt-h
I-1/2

-/(Rt) 1 As might be expected, the maximum displacement occurs at the

point of load application. The maximum compressive hoop stress occurs at

s/(R4) 1/2 = 4.25 and N20(- (R/t)/Et = 0.667. 1he values of N20 cal-

culated from membrane shell theory are also shown in Fig. 89(a).
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Figure 89(b) shows the modal displacements w/t, (v/t) (R/t)I/ 2 , and

(u H/t) (R/t)]/2 corresponding to bifurcation in an 8-wave pattern. The

iraximum displacemenus occur near thie point where the maximum prebuckling

1/2
compres&ive hoop stress N20 occuirs. For R/t > 50, w/t, (v/t)(R/t)I, and

1/2
,. (uH/t) (R/t) are almost independent of R/t when these quantities are

1/2
plotted vs s/(Rt)1. The displacements are confined to fairly shallow

portions of the spherical shells.

Buckling of Internally Pressurized Vessel Heads

Introduction

The examples presented here fall into the s .ie cla.s a.s those of the previous

section: buckling under meridinnal tensico cs..- ned with hoop compression.

However, the shells described here are r.ot sphe_ cal. The problem is of

special significance to designers of pressure vesse1s, many of which have

torispherical or ellipsoidal heads. An example of a typical post-buckled

pattern for an elastic shell is shown in Fig 90.

This class of problems is particularly interesting :- -use in the range of

practical design parameters predicted behavior is found to be sensitive

to prebuckling geometric nonlinearity as well as miaterial nonlinearity,

the former effect increasing the critical pressure and ','e latter decreas-

ing it. Therefore, the problem serves as an excellent den,)nstration of the

kinds of nonlinear phenomena an engineer should be aware of when he under-

takes a stability analysis. The description here applies to both torispheri-

cal and ellipsoidal vessel heads, although most of the applications shown

in Fig. 90 - 104 and Table 6 are to torispherical hea,'s.

Interest in internally pressurized torispherical heads was stimul e,' Dy the

failure of a large fluid coker undergoing a hydrostatic proof test . o
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California in 1956. The failed vessel is shown in Fig. 3 Galletly

[ 113, 1] determined from an elastic, small-defleciion analysis that the

stresses exceeded the yield ooint of the material by considerable margins

over substantial portions of the vessel. Galletly's work [ 113] stimu-

lated Drucker and Shield [ 114, 115] to perform limit analyses of ,nells

of reývolution using simplified yield surfaces for a Tresca material. Other

elastic-plastic analyses of torispherical shells were published by Gerdeen

and Hutula [ 116], Crisp and Townley [117], and Simonen and Hunter

[ 118]. Calladine [ 119] presented a noval analysis of the limit pres-

sure of torispherical heads which gives results similaz to those obtained

by Shield and Drucker [ 115]. Savd [ 120] cornducted a series of tests

on torispherical, toriconical, and flat hea&d. Several papers on the

elastic-plastic analysis of pressure vessel heads may be found in Ref. [ 121],

including contributions by Gerdeen [ 122], Mescall [ 123], an• Yarcal

[ 124]. Other references to work in thi: area are given by Esztergar [ 125].

The possibility of nonaxisymmetric buckling of internally rressurized tori-

spherical heads was first predicted by Galletly 1]. Fino and Schneider

[ 126] reported such buckling in a head designed according to the ASME code,

but at a pressure slightly below the design pressure. It is likely that the

unexpectedly low buckling pressure resulted from nonaxisymmetric n.IperfecLions

generated when spherical and toroidal gores were welded together to form the

very large head. Mescall [ 127] was the first to present a solution of che

nonaxisymmetric stability analysis. He used elastic small deflection theory.

Adachi and Benicek [ 128] conducted a series of buckling tests on tori-

spherical heads made of polyvinyl chloride (PVC), chosen primarily because

of the high ratio of yield stress to Young's modulus, which ensures that buck-

ling occurs before large-scale yielding. The correlation of elastic analysis
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. with these tests was much improved by inclusion of nonlinear geometric ef-"4'.

"*' fects. Thurston and Holston [ 129] were the first o: account for moderately

large axisymmetric prebuckling meridional rotations in the stability analysis

of these heads. Since publication of Ref. [ 129] many computer programs

have been written which calculate nonsymmetric buckling loads of arbitrary

elastic shells of revolution including geometric nonlinearity in the pre-

buckling analysis and prebuckling shape changes in the stability analysis

11- 14].

Recently, several papers have appeared on nonsyrmmetric buckling of elastic-

plastic pressure vessel heads: Brown and Kraus [ 130" calculated critical

pressures for internally pressurizid ellipsoidal heads with use of small

"deflection theory. Bushnell and Cailetly [ 131] found buckling loads for

externally pressurized torispherical heads pierced by nozzles and for

conical heads with use of large deflection theory in the prebuckling analy-

-q sis, and Bushnell and Galletly [ 132], Lagae and Bushnell [ 133], and

Galletly [ 134, 135] used the BOgOR5 computer program to compare theoret-

ical predictions ,"ith tests by Kirk and Gill [ 136], Patel and Gill [ 137],

and Galletly [ 134, 135] for buckling of internally pressurized tori-

spherical and ellipsoidal heads.

Cause and Characteristics of Nonsymmetric Bifurcation Buckling

Figure 91(a) shows a discretized model used for the BOSOR5 analysis of a

torispherical head. Finite difference nodal points are concentrated in the

region where buckles are expected to appear. Figure 91(b) is a schematic

"of the meridian as deformed axisymmetrically by internal pressure. Circum-
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ferential (hoop) compression develops wherever the radius r is dimin-

ished from the undeformed state. It is this hoop compression that ciuses

* rnonsymmetric bifurcation buckling. The value of the buckling pressure p
cr

depends most strongly on the value and meridional distribution of the

hoop stress resultant N2 0 , on the curvature of the deformed meridian in the

region where N is compressive, on the material p-operties, and of course
20

on the thickness of the shell. The circumferential bending rigidity C (Eq. (84)
55

- - of Ref. [430] ) is probably the most important component of stiffness in the

calculation of the stability determinant because the critical circumferen-

t~al wave number n is usually very high for such a geometry and the
"cr

strain energy associated with the buckling mode thus varies approximately

4
"as C 55ncr Figure 94(b) shows typical buckling modes corresponding

to an elastic analytical moel. The buckles are shown outward although of

course they vary as cos509 and cos909 in the circunjferential direction.

The development of visible buckles such as shown in Fig. 90 is a process

and not the single event predicted by a bifurcation (eigenvalue) buckling

.. analysis. As the pressure in a test specimen is increased above some

critical value a very localized isolated incipient buckle forms in the

knuckle region, invisible to the naked eya but detectable by a sensitive

probe or a strain gage. The buckle grows slowly at first and then more

rapidly, and suddenly becomes visible. This visible buckle generally

"covers most of the knuckle region in the meridional direction but has a

very short circumferential wavelength. After formation of the first

* buckle the pressure can be further increased substantially, causing the

formation of other visible buckles in the knuckle region, each one iso-

lated circuMferentially from its neighbors, as shown in Fig. 90. An

isolated buckle,generated by circumferential compression in the knuckle
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region, apparently causes the relief of this compression within a sector

surrounding the buckle, thereby preventing the formation of the uniform
-..-

. buckle pattern typical of buckled axially compressed cylindrical or exter-

nally pressurized spherical shells.

The theoretical results shown here are derived from an analysis which is

founded on the assumption that we are especially interested in the pressure

at which the first incipient buckle forms. Therefore, buckling is treated

as a single event, predicted by means of the eigenvalue formulation sum-

marized in the previous analysis section.

Difference in Elastic Behavior of Ellipsoidal and Torispherical Hleads

Figure 92 showsthe hoop stress resultant distribution in an elastic 2:1

ellipsoidal head compared to that in a similar torispherical head with

geometry as shown in the Figure. Dimensions of the ellipsoidal shell are

shown in Fig. 93(a). The buckling mode in the torispherical head has

. a maximum at a location nearer to the axis of revolution that does that

in the ellipsoidal head, corresponding to the different locations of the

peak compressive hoop resultant dt the critical pressure.

*Elastic Bifurcation Buckling

Accurate prediction of bifurcation buckling loads in the elastic range of

• material properties requires an accounting for nonlinear geometric effects

in the axisymmetric prebuckling analysis and inclusion in the nonsymmetric

stability (eigenvalue) analysis of the fact that the prebuckled head has

a new axisymmetric shape.
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Figure 93(a) shows a discretized model of an ellip-oidal nead analyzed with

BOSOR5 [ 47]. The axisymmetric prebuckling deflected shape is shown in Fig.

93(b) and a nonsymmetric bifurcation buckling mode with critical pressures

from linear and nonlinear theories are given in Fig. 93(c).

* •What causes the difference between the buckling pressures calculated for elas-

tic material with small deflection theorv and with large deflection theory?

"Fig. 93(d) helps to explain. The predicted bifurcation pressure depends on

- the distribution of the meri-ional and hoop stress resultancs and on the

wall curvature in the area where the first buckles appear, The values of

these quantities depend on whether or not moderately large deflection effects

are included in the analysis.

Assuming that the wall material remains elastic, the most significant determinant

of the buckling pressure for a shell of given properties is the hoop stress

resultant N20 in the area of The knuckle where buckling occurs. Fig. 93(d)
V20

shows that in this region N does not grow linearly with pressure but quite
20

a bit more slowly. The slower-than-linear growth of compressive N20 in the

axisymmetric prebuckling regime is due o two factors: As the pressure is

increased the ellipsoidal shape "tries" to become more spherical. For a

small internal pressures, a given increment in pressure causes a relatively

large snape change because the meridional curvature varies steeply in

the region where N is compressive. For higher internal pressures the varia-
20

tion of meridional curvature has become more gradual and the given pressure

increment therefore causes less of a further change in shape. The second

and smaller factor causing slower-than-linear growth of N is the oressure-
20

rotation effect. The nonlinear growth of N explains why the buckling
20

pressures from nonlinear elastic theory are higher than those fromit linear

theory.
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There is another no:linear phe,,omenon which has the ý!pposite effect on the

buckling load: As t>. n *ressure is increasecr, the meridional curvature dimin-

Sishes in the region where buckling occurs, as can be seen from Fig. 93(b).

This axi,'rmnmetric decrease in meridional curvature in the prebuckling regime

has the effect of reducing the circumferential stress resultant required to

cause buckling. The midjle curve in Fig. 93(d) gives the critical hoop re-

sultant distribution predicted with use of small deflection theory -- a

theory which neglects the reduction in meridional curvature due to the axi-

s\-Tmetiic crebuckling change in chape oý the ellipsoidal head. Notice that

this critical hoop resultant distribution is aenerally larger in absolute

"value than is the critical distribution of N2 0 predicted with use of large

"deflection theory.

.Figure 93(e) shows the buckling modes from the large and small deflection

Sarnalyses. The peaks in the buckling modes follow the same trend as the peaks

in the distribution of compressive N20.

Similar nonlinear geometric effects are present in the case of torispherical

pr(,ssure vessel heads Figure 94(a) shows a discretized model of a tori-

spherical head of the type tested bv Adachi and Benicek [ 128]. Analytical

and experimental results for elastic torispherical heads of various geometries are

' given in Figs. 94(b) and 95. The nonlinear theory always leads to prediction of

higher buckling loads and these predictions are generally in much better

agreement with the tea:t results than are the predictions obtained with use

" of linear theory. The nonlinear results from BOSOP5 are in reasonably good

agreement with the critical pressures predicted by Thurston and Holston

129]. Typical buckling modes are shown in Fig. 94(b).
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Elastic-Plastic Bifurcation Buckling

"Figures 96 (a) and (b) show post-buckled states of a small machined tori-

spherical head rmade of aluminum and a large torispherical head fabricated

by forming. Buckling for these heads occurred in tiie plastic range of

material behavior. The buckles are isolated from each other and have short

ciicumferential oavelengths, as observed for the elastically buckled model

shown in Fig. 90, but they protrude from rather than indent the shells.

This protruding mode was observed in the poqt-buckled specimens tested by

Galletly [134, 135], Kirk and Gill [136], and Patel and Gill [137],

The two biggest effects of plastic flow on the predicted bifurcation buck-

•° ling pressure are thc following:

0 1. The rate of change of the compressive hoop stress resultant with increas-

ing pressure is strongly dependent on the rate at which th: material

strain hardens;

2. Th• integrated constitutive coefficients [DTo] (See Eq. 255 of Ref. [430])

a-t reduced from their elastic values.

Figures 97 (a) and (b) show the peak hoop resultant as a function of in-

ternal pressure for two values of post-yield hardening modulus ET. A

typical behavior of mild steel torispherical shells is that they buckle

"nonsymmetrically at pressures for which the hoop compression is aiminish-

ing in the knuckle region, as shown in Fig. 97 (c). (Yielding initiates

6
in this shell at 10 p/E=1.33) Figure 98 shows the very large differ-

ence between predictions of prebuckling stress from linear and nonlinear

* analyses. The nonlinear results were obtained
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by application of BOSOP5 [ 471 to a specimen tested by Adachi [128],

-" . and they agree with the measurements.

Table 6 lists test and predicted incipient buckling pressures for many

of the internally pressurized torispherical machined specimens analyzed

rpith BOSOR5. The nominal dimensions of the specimens are given in Table

* .- 6. The quantities, t, R , R , P , and L are the nominal thickness,
c t s C

. radius of the cylinder to which the head is attached, radius of the

-. toroidal knuckle, radius of the spherical closure, and length of the

cyl-Jdrical portion to which the head is attached, respectively.

"The thicknesses of the test specimens varied in both the circumfercr tiel and

meridional directions. Typical circumferential variations of thickness in

the toroidal knuckle where buckling occurs are shown in Fig. 99. BOSOP5

runs were made using the minimum thicknesses measured at each meridional

station. In the BOSOP5 models as well as in the actual specimens the

thickness varied in the meridional direction by as much as 30%.The differ-

ences in the BOSOR5 oredictions for specimens with the same nominal geometry

arise from different meridionally varying thickness distributions used in the

"discretized models.

"Plastic flow prior to bifurcation buckling occurs in a fairly broad axi-

symmetric band near the junction between the spherical and toroidal

portions. Stfess-strain curves for the specimens and maximum effective

strains at buckling are shown in Fig. 100. There is reasonably good

agreem, -it between test and theory for the aluminum specimens. Discrepan-

cies may be due to the fact that the actual specimers were nonsymmetric
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0 1because of circumferentially varying thickness and meridian profile,

whereas the BOSOP5 models are axisymmetric. Also, the material flow law

"(associated with von Mises yield surface) and hardening law (isotropic)

may not be adequate to describe the actual plastic behavior. Figure 101

shows that with a small amount of strain hardening the path followed by a

material point in stress space as the pressure is increased monotonically

is sharply curved. We do not yet understand metal plasticity well enough

to be able to predict with certainty the state of a structure that has under-

gone nonproportional biaxial loading.

In general the BOSOR5 computer program [ 47] seems to predict bifurcation

buckling at a location nearer to the sphere-torus junction than observed

* in the tests, and the critical circumferential wave number obtained from

the theories in which plasticity is included are somewhat lower than the values

observed from the post-buckled states of the specimens.

From Table 6 it is seen that the buckling pressures predicted with use of

deformation theory are somewhat less than those obtained with use of flow

theory. The primary reason for the lower values associated with deformation

theory is that the constitutive law coefficient DT5 5 0 (Eq.(225)in L430]) includ-

ing elastic-plastic effects, is considerably smaller in the region where

buckling occurs if deformation theory is used. This coefficient relates the

change in circumferential curvature during buckling to the change in cir,':m-

ferential buckling mome.t resultant, and is especially important because the

circunferential wavelength of a buckle is small. Therefore the circumferen-

tial bending energy required to form a buckle is perhaps the most signifi-

cant part of the total strain energy balance associated with buckling.
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*O The test and theoretical results for the four mild steel specimens are not

in close agreement, as seen in Table 6. A detailed explanation is sug-

gested in Ref, [ 132]. To summarize here, it is possible that the buckling

mode associated with the lowest predicted eigenvalue grows very little in the

post-bucvling regime and so this mode was therefore not observed in the tests.

"This explanation seems likely in view of the characteristic shown in Figs.

97(b) and (c) that the compressive hoop resultant in the knuckle region

decreases steeply after yielding of the elastic-perfectly plastic material.

Also likely is the fact that because circumferential nonuniformities in

the thickness of test specimens cause relatively large circumferential pre-

bifurcation bending strains to develop asthe pressure is increased, the com-

pressive destabilizing circumferential stress resultant grows mo :e slowly

with increasing pressure than predicted by the axisymmetric BOSOR5 model.

A more detailed explanation is offered in Ref. 1 132].

From Table 6 it is seen that use of linear elastic theory always leads to

a lower prediction of bifurcation buckling pressure than use of nonlinear

elastic theory. The reasons for the different predictions are given in the

discussion associated with Fig. 93.

Figures 102 - 104 pertain to aluminum torispherical specimens tested by

"Patel and Gill [ 137]. Figure 103 gives comparisons of predicted and

- measured incipient buckling pressures for the heads shown in Figs. 102(a)

and (b). The ranges of pressures over which the buckling patterns were ob-

,-. served to develop are also indicated in Fig. .103. In Fig. 103:

O -ACT pressure at which the first buckle was fully developed,

-CLEAR pressure at which the first buckle could be felt by

touching the surface of the specimen,

INCIPIENT prEssure at which the first buckle was detected by a

"sensitive probe revolved around the circumference at
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a station in the toroidal knuckle.

Figure 104 shows the growth of a minute incipient buckle pattern in one of
m2

Patel and Gill's specimens over a pressure range 0.402 < p < 0.617 IM/r

Again, we see that in actual specimens what we are characterizing as a

single event called "bifurcation buckling" is actually a process that occurs

over a finite range of internal pressure.

Results given by Lagae and Bushnell [ 133] indicate that reasonably accur-

ate predictions of incipient buckling can be obtained with models in which

constant thickness is assumed, the model thickness being taken as the average

measured thickness along the tor-idal knuckle meridian for which this average

is minimum., The quality of the theoretical predictions of incipient buckling

as well as the behavior of the test specimens as the pressure is increased

above the incipient buckling pressure indicate that these types of vessels

are not particularly sensitive to initial imperfections.

Conclusions about Bifurcation Buckling of In.ternally Pressurized Heads

1, The major effect of moderately large axisymmetric prebuckling deforma-

tion is to cause the band of circumferential compression which occurs in the

knuckle to increase more slowly than in proportion to the pressure, as shown in

Figs. 93(d) and 97. Thus, buckling pressures predicted with use of geometrically

nonlinear prebuckling theory are higher than those predicted with use of

linear prebuckling theory (Table 6).

2, A smaller counteracting influence of moderately large deflections is due

to the effect of the increase in meridional radius of curvature of the

knuckle region during prebuckling deformations on the nonaxisymmetric

stability analysisf This curvature change causes a reduction of the pre-
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"dicted buckling pressure from a value that would result if terms related to

it were dropped from the equations governing the stability analysis, as demon-

strated by the middle curve in Fig. 93(d).

3. For monotonically increasing pressure above that causing initial yield-

ing, the circumferential and meridional stresses in the knuckle do not in-

crease proportionally. The curvature of a path in stress space followed by

a given point depends very strongly on the amount of post-yield strain harden-

4ng exhibited by the material from which the vessel head is fabricated:

The less the strain hardening, the more this path is curved, as shown in

Fig. 101.

4. As might be expected, the predicted buckling pre.-sure obtained with

elastic-plastic anelysis is less than that obtained with elastic analysis

(Table 6).

5. Use of deformation theory rather than flow theory in the stability

"analysis leads to lower predicted buc ling pressures (Table 6).

6. The distribution and magnitude of the hoop compression in the knuckle

region depends very strongly on the degree of strain hardening exhibited

-. by the material. The peak compressive hoop resultant in a vessel head fabri-

cated from7. mild steel or other material with negligible strain hardening

increases initially with increasing pressure, but very soon starts to de-

crease as the knuckle is stressed into the plastic range, as seen in Pigs.

97(b) and (c). In contrast, if the material exhibits a moderate amount

of strain hardening, the peak compressive hoop resultant continues to in-
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crease to higher pressures before it reaches a maximum value, as disclosed by

Fig. 97 Ia). This difference in behavior of the destabilizing hoop resultant

-V.• affects the strategy to be used for calculation of bifurcation buckling

eigenvalues, as pointed out in Ref. [ 133].

7. Buckling occurs only for very thin specimens. For example, with 2:1 heads

nonsymmetric buckling occurs only if the diameter-to-thickness ratio is

greater than about 500. It is not presently within the state of the art to

. fabricate by machining specimens of reasonable size for testing in the labora-

tory with thickness variations around the circumference less than five to ten

"percent. These small nonaxisymmetric variations cause the growth of circum-

" ferential waves in the knuckle at pressures well below the buckling pressure.

* It is felt that the circumferential nonuniformity is responsible for rather

- -•large discrepancies between measured and predicted strains in the knuckle

region of torispherical shells for pressures exceeding the proportional

limit of the material.

8. The observed buckling pressure depends on how buckling is defined. In

the tests on torispherical shells performed by Galletly [ 134], the first

"buckling pressure is defined asthat pressure at which the first buckle be-

1. %" comes visible to the unaided eye. In the tests by Kirk and Gill [ 136],

* the buckling pressure is defined as that pressure at which a short-wavelength

disturbance is first detected by a sensitive displacement transduc-r rotated

"around the circumference at the midpoint of the knuckle. In one of Kirk and

* Gill's specimens there was more than a 50 percent increase in the pressure

"from that at which the transducer detected a small wave to that at which the

"wave grew to such a size that it became visible.

0,
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9. Finally it is concluded that in order to obtain a fuller uniers' ,ning

of the elastic-plastic behavior of thin vessel heads under interral pnssure,

a better understanding of the biaxial flow of metals subjected -o r,',iprcpor-

tional loading is needed, as well as the capability to manufac.ure v---r thin

-"* test specimens in which the tolerance on axisymmetry of thickress Y x"out an

* order of magnitude smaller than is possible with state-of-the-art fabri7ation

techniques.

J.
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Bifurcation Buckling Near the Axisymmetric Collapse Load

*- .. A Summary of Examples Already Described

We have already seen many examples in which nonsymmetric bifurcation buckling of

shells of revolution occurs near the axisymmetric collapse load. The classi-

cal equation for buckling of a monocoque cylindrical shell under uniform

* axial compression contains nu reference to the number of circumferential

"waves. Indeed, it is disclosed in Ref.[430], Fig.29 that for very thin cylinders

use of nonlinear theory leads to a prediction of axisymmetric elastic collapse

due to bending near the edge at an axial load only 20% higher than that

corresponding to nonsymmetric bifurcation buckling with n = 18 circumferen-
cr

tial waves. The thicker axially compressed cylinder shown in Fig. 6 fails

initially in an axisymmetric colla2se mode, but just after the peak in the load-

deflection curve has been passed a nonsynmetric deformation pattern begins to

develop, indicating the presence of a bifurcation point near the maximum load.

The two-column shallow truss shown in Fig. 10 displays simultaneous .'ym-

metric collapse and bifurcation buckling for a certain value of the shallow-

"ness parameter h/L, as demonstrated in Fig. 12. The shallow spherical cap

"under uniform external pressure exhibits analogous behavior. Shallow spherical

caps clamped at the edge fail by axisymmetric collapse and bifurcation buckling

at the same pressure for a value of the shallowness parameter X of about 6,

as seen in Fig. 37. Caps with edge rings act in a similar fashion, as

revealed by the predictions listed in Table 3 for small edge angles.
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The axisymmetric collapse and bifurcation buckling loads of fairly thick

ring-stiffened cylinders under external hydrostatic pressure are often close.

Figures 35 and 36 indicate that inclusion of room temperature creep leads

to a prediction of axisymmetric collapse at a slightly lower load than that

corresponding to nonsymmetric biftrcation buckling predicted for the same

model with creep neglected. Similar differences in buckling behavior might be

expected to result from application of hydrostatic pressure to two similar

ring-stiffened cylinders, one made of a material that displays less strain

hardening than the other. The specimen made of the milder m-,erial is more

likely to collapse axisymmetrically whereas the other might buckle nonsymmetri-

cally, depending on geometry.

* Finally, infinite and finite length long straight pipes under bending fail by

* .. collapse due to smooth flattening of the cross section combined with a short

axial wavelength wrinkle ox bifurcation buckling mode that develops just

before the peak moment is reached, as shown in Figs. 39 and 43. With a

high enough external pressure applied in addition to the bending moment,

the wrinkling mode develops just after the maximum in the moment-curvature-

change path has been attained. Figure 42 (b) indicates that collapse and bi-

furcation buckling occur at almost the same critical moment for cylinders

of any length. Certainly this is true for very short cylinders because these

behave, at the circumferential location where axial compression is maximum,

in a way similar to cylinders under uniform axial compression. We have already

seen from Fig.29 of Ref. [430] that axisymmetric collapse and nonsymmetric bi-

furcation buckling for uniformly axially compressed cylindrical shells occur

at loads that are faily close.
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Failure of a Water Tank

3
In 1972 in Belgium a steel water tower of 1500 m capacity collapsed as it

was being filled for the first time. This accident and analyses of the struc-

ture are described in [ 2]and[ 140]. Figure 3 shows the tower after

failure and its overall dimensions. The collapse occurred when the water was

almost at the maximum level for which the tank was designed. It is felt that

collapse probably initiated in the conical section near the deepest water

level. Figure 3(b) shows a wrinkled meridian at this location which

gives credence to this hypothesis.

As might be expected 1he catastrophic failure of such a large, expensive, and

fairly complex shell structure motivated' engineers to seek an explanation.

Professor Vandepitte, Dr. La;ae, and their coworkers at the University of

Ghent in Belgium tested models made of mylar [ 141]. Figure 105 shows

a specimen before and after collapse which occurred when the model was

filled to a level 38 cm above the clamped base. With linear prebuckling analy-

sis the BOSOR4 computer program [ 14] yields a prediction of a critical load

factor p = 1.12 corresponding to nonsymmetric bifurcation buckling with 14

circumferential waves. In other words, if a prebuckling stress state is cal-

culated from linear theory corresponding to a water level of 38 cm, and a solu-

tion is obtained of an eigenvalue problem of the type in Eq.(123)in Ref.[430], in

which K is the stiffness matrix of the unloaded shell and K is the load-1 2

geometric matrix corresponding to the membrane stress resultants in the

wall of the tank when it is filled to a level of 38 cm, the lowest eigenvalue

X cokresponds to n = 14 circumferential waves and its value is p = p 1.12.

The predicted buckling mode is shown in Fig. 105(d). Buckling is caused

by meridional compression which is maximum at the clamped base. This com-
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pression is combined with a circumferential stress resultant distributed

as shown in Fig. 106. The phenomenon is analogous to buckling of an

axially compressed cylinder with internal pressure.

FJgure 107 shows a plot of maximum prebuckling normal deflection w vs load

factor p corresponding to the tank with internal hydrostatic pressure linearly

varying over the constant axial distance of 38 cm above the clamped base. The

problem is solved here in a slightly unrealistic say: The level of the fluid

is held constant at 38 cm, which corresponds to the level at which failure

occurred in the test. The amplitude p of the linearly varying normal pres-

sure is increased in increments, indicated by points on the prebuckling load-

deflection curve shown in Fig. 107. Thus the load paths in stress space

seen by theoretical material points in the BOSOR4 model are different from

those actually experienced by the corresponding points in the shell wall during

the test. As long as the predicted load multiplier is fairly close to unity

this path difference is immaterial, since no path-dependent plastic flow

occurred in the test specimen. Even if plastic flow does occur before pre-

dicted failure, which as shall be seen is the case for the BOSOR5 model of

the large steel water tower shown in Fig. 3, the path difference is very

small in the critical region if buckling occurs over a relatively short merid-

ional distance near the bottom of the tank; as it does in the elastic model

(Fig. 105(c,d)).

In Figure 107 bifurcation buckling points and corresponding to the
Pt nb

critical number of circumfeyential waves, n 14, are shown on the linear
cr

and nonlinear prebuckling load-deflection paths. The buckling modes in both

cases are almost identical (Fig. 105(d)).
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' gure 108 shows the axisymmetric prebuckling displacement distributions

predicted from linear bending theory at p = 1.0 and nonlinear theory for two

load levels near axisymmetric collapse. The meridional variation of w at the

load multiplier p = 0.993 corresponding to collapse resembles the nonsymmetric

bifurcation buckling mode displayed in Fig. 105(d).

* The theoretical and experimental results are very close, indicating that the test

model was well made and the critical load is not as sensitive to initial imper-

"- fections as one might expect for a very thin conical shell in which the destabiliz-

ing prestress component is axial compression. There are two reasons for the

apparent milder sensitivity to initial imperfections displayed by this problem

than that for axially compressed thin cylindrical shells which it resembles:

The highest axial compression occurs in a fairly local region near the clamped

base and, more significant , a stabilizing circumferential tension exists. It

has been found that critical loads for axially compressed cylindrical shells with

i-nternal pressure are less sensitive to initial imperfections than are those

without internal pressure [ 34 ] One reason for this decreased sensitivity is that

the internal pressure increases the amplitade of the local axisymmetric bulges

near the edges, creating a rather large predictable imperfection that grows as

the axial load is applied. Without the internal pressure, a similar bulge of much

smaller amplitude is created only by the Poisson effect.

The numerical solution of this problem has many pitfalls. These arise from:

(1) The close proximity of loads corresponding to axisymmetric collapse

and nonsymmetric bifurcation buckling;
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(2) The sensitivity of the results to nodal point distribution in

the critical area where buckling occurs;

(3) The numerical difficulty caused by the fact that the shell can

bucl-le under external pressure as well as internal pressure, leading

to the possibility that the smallest eigenvalue X of the system

"" represented by Eq.(1 2 3 ) of Ref.[439] might correspond to solution of the

wrong physical problem.

An Attempt to Predict Elastic-Plastic Buckling of the Large Steel Water Tower

Including Fabrication Effects

In this section an attempt is made to explain the unexpected collapse of the

* steel water tower shown in Fig. 3 by accounting separately for residual

stresses and deformations caused by axisymmetric COld bending or welding or mis-

match between structural segments. The analysis shows that axisymmetric models

of these effects do not explain the discrepancy between the predicted collapse

under hydrostatic pressure and the actual collapse in 1972 of the 1500 cubic-

meter tower. However, the modeling techniques and results are included here

to demdonstrate how such effects might be accounted for in an approximate man-

"ner and the influence they have on predicted collapse loads. More is written

on this subject in the section on ring-stiffened cylinders. The results

* described here were obtained with use of the BOSOR5 computer program [ 47].

Tank Configuration and Discretized Model: Figures 109 (a) and (b) depict

*k the water tank geometry and discretized, segmented model for use with BOSOR5.

Material properties, locations of discrete rings, and locations of circumfer-

ential welds are indicated in Fig. 109(c).

104 -

-w So



Welding: Girth welds are located as indicated in Fig. 109(c). These loca-

tions correspond to the junctions between Segments (9) and (10), Segments

(10) and (11), and Segments (11) and (12) ( 109(b)). The water tower had

other girth welds, of course, but they were in locations which were less

" critical for stability and therefore not included in the BOSOR5 model. Longitu-

dinal welds could not be included in the model because they produce a non-

symmetric residual stress and dir-.placement pattern.

The welding process introduces destabilizing stresses and deformations because

of shrinkage of the weld material during cooling. The effects of weld shrink-

age are simulated in [ 8] and [ 142] by introduction of an initial thermal

.. , loading phase in which it is assumed that a certain amount of material in the

local neighborhoods of each girth weld is cooled beleow ambient temperature to

a difference approximately equal to the annealing temperature. The amount of

cooling is also determined such that weld shrinkage amplitudes typical of

those observed in tests are generated. Faulkner [ 143] has observed radiL.l

girth weld shrinkages of approximately 10% of the shell wall thickness. The

residual stress distribution thus generated is characterized by local tensile

cir-imferential yielding in the immediate neighborhoods of the girth welds and

elastic circuinferential compression over broader bands of width proportional

-*! to the "boundary layer" (Rt)1/2. in which R is the normal circumferential cur-

vature and t is the shell wall thickness. In addition to this residual stress

pattern, the qirth welds introduce axisymmetric geometrical imperfectionu--

local shrinkages that are amplified by the meridional compression generated

when the tower is filled with water.

Figure 110(a) shows the assumed temperature distribution along the conical portion

of the water tower in which three girth welds are being simulated. In the BOSOR5
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analysis this thermal loading is applied first and the shell thus pre-

stressed is subsequently further loaded by the hydrostatic pressure. Figure

111 shows the weld shrinkages gererated by welding. The deformed meridians near

* collapse, neglecting and including initial effects due to girth welding, are

shown in Figures 112 (a) and (b), respectively. The quantity X is a load

factor 3'Ach that a factor X = 1.0 would indicate perfect agreement betweenS~cr

the numerical prediction and the actual collapse condition.

Mismatch: When the water tower is assembled, the middle surfaces of the various

sections are imperfectly aligned. In the BOSOR5 model it is necassary to re-

<•'V strict the mismatch to be axisymmetric. The two mismatch zonditions investi-

"gated here are shown in Fig. 110(b).

Cold Bending: The tower was fabricated from steel sheet which was initially

flat. The various sections were cold formed to the appropriate radii of curva-

ture. This cold forming operation is simulated by initial thermal loading cycles

in the develcpable Segments (1), (2), (4), and (7) through (12).

The procedure is described in detail in [ 142]. In each segment the ampli-

tude of the temperature, which varies linearly through the thickness as shown

in Figure 113, is initially increased in time to simulate cold bending to

* a die radius, R . Subsequently, the temperature amplitude is decreased to0

"simulate springback to the final design radius of curvature. R. The maximum

temperature amplitude T is assumed tc be constant along the meridian in each
0

*b I segment and is derived for each segment from the formula

X2oT t/(2R )(34)
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O in which t is the shell wall thickness and R the average normal circumferen-'0O0

tial radius of curvature to which the segment is bent before springback, is

given by

-'.-3

IR = IMI 12 (-v 2)/(Et ) + I/R ( 35)

with

IM1  a O t 2/[4(1-v + V 21/2] 36)ye e

for elastic-perfectly plastic material. In Eq. ( 34) 2 is the coefficient
2

of thermal expansion in the circumferential direction. The coefficient of

thermal expansion in the meridional direction is assumed to be zero. In Eq.

35) M is the maximum cold bending moment and R is the average normal

circumferential curvature in the segment after springback (given by the water

tower geometry). In Eq. ( 36) a is the material yield stress (236 N/mm .
y

-"- Eq. ( 34) is derived from Eq.(35) of Ref.[142] and Eq. (35) is derived from

*. Eq.( 17) of Ref. [142] . Eq.(36) appears as Eq.(17a) in Ref.[142]. The

* quantity V is the effective Poisson's ratio, taken as 0.5 here.
e

The time to complete relaxation of the cold bending moment is given by

trelax ( + IMI 12(1-v 2) R /Et 3)t; (t = 1.0) ( 37)
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which appears as Eq.(15) in [ 142]. Rather than using Eq. ( 36) for M in

"calculating tr , we use BOSOR5 to calculate the circumferential moment
relax

"M 2 (BOSOR5) corresponding to time t = 1.0 in Figure 113 and then set

M = M (BOSOR5) in Eq. ( 37). This is done because the residual stresses are quite
2

sensitiveý to t and M, as given by Eq.( 36)with v = 0.5, is only an
relax e

approximation. The temperature amplitudes T and the relaxation times foro

the various segments are given in Figure 113. After the thermal loading

cycle is completed at time t = 2.0, the hydrostatic pressure loading is begun.

Figure 114 shows the deformed meridian at time t = 1.0 (before springback),

-* t = 2.0 (after springback), and at four hydrostatic pressure amplitudes,

- = 0.5, 1.0, 1.4, and 1.7. X = 1.0 corresponds to the hydrostatic pressure

amplitude at which the tower actually failed. The BOSOR5 computer program

predicts axisymmetric collapse at lower hydrostatic pressures than non-

axisymmetric bifurcation buckling in all the cases treated here.

Table 7 lists predicted failure factors for all the cases investigated. The

water tower is considered to be filled to the level indicated in Figuru 109(c)

and the factors A listed in Table 7 correspond therefore to factors on thecr

density of water, as was the case in the previous section on the tests of mylar

models. It is seen from the resulta in Table 7 that introduction of residual

* stresses and deformations due to cold bending flat sheets into curved parts of

the water tower has the largest effect on the predicted failure load, but that

none of the axisymmetric models studied here explains the discrepancy between

* the predicted collapse load and the disastrous failure that occurred as the

reservoir was being filled in 1972.
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Conclusions: It is concluded from this study that the early failure of the

water tower was not due to the axisymmetric effects included here. Figure 3(b)

shows a meridional wrinkle similar uo those depicted in Figures 112 and

114 occurring in the neighborhood of a meridional weld. Such a weld causes

"nonaxisymmetric compressive meridional prestresses that reduce the hydro-

S.- static pressure required to cause yielding in a more direct way than does the

axisymmetric membrane circumferential compression typical of a girth weld or the

complex circumferential residual stress pdttern through the thickness gene-

rated by cold bending. Also not included in the present anal,'sis are the effects

of nonaxisymmetric geometrical imperfections and the effect of initial residual

stresses in the flat steel plates from which the tower was subsequently cold bent.

These residual stresses arise from fabrication (rolling) of the sheet and

* •cutting of it to size. Also, due to certain input limitations in BOSOR5, the

simultaneous -ffects of welding, cold binding, and mismatch were not studied.

Of all the effects not included in this investigation, the largest are probably

due to nonaxisymmetric geometrical imperfections and residual stresses from

merdional welds.

As a result of the study reporte3 in Ref. [ 2], however, the tower was re-

designed as shown in Fig. 115 (a). The predicted collapse of the new design

occurs at a much higher load factor, X= 2.65, as indicated in Fig. 115(b).

1.0
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Section 4

EFFECT OF BOUNDARY CONDITIONS AND

ECCENTRIC LOADING

Introduct ion

This section is devoted mostly to cylindrical shells. Practically all of the

investigations of the effect of boundary conditions on stability have been

specialized to this most important geometry. The study of the effect of eccen-

tric loading is concentrated even more specifically on axially stiffened

cylinders under axial compression.

Practical shell structures are very often built in parts with different organi-

zations of even companies being responsible for the design of "their" part.

Very often buckling loads for each part are c" 'ated with the sometimes un-

"justified assumption of simple support or clamping at the boundaries of that

part. The main purpose of the discussion and examples presented here is to give

"the reader a physical feeling for the influence of various boundary conditions

and load eccentricity on buckling loads and thereby to sound a note of warning

not to take these factors for granted, especially in the final analysis stage

of a project.

• Figures 116(a) and (b) show a photograph of a specimen tested by Singer,

"et al [ 33] and a schematic of a rather complex boundary clamp in the speci-

"men that might simulate an edge condition between two sections of a rocket.

* Figure 21 shows the post-buckled state of one such stiffened cylinder sub-

' - jected to uniform axial compression. One might analyze th4is cylinder by
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"including all the parts A through G plus the stiffened cylinder, H, itself and

assume that the loading is applied by uniformly moving the end plates "A" toward

each other. In such a model it would not be necessary to worry about boundary

conditions or eccentricity of load application at the end of the stiffened

cylinder H. These factors would emerge as results of the analysis; they

would nct play the role of the assumptions. Often this is the best approach

to the buckling problem, especially if the structure is axisymmetric and a

one-dimensionally discretized model is sufficient. The general rule here would

be to include in the model all parts of the structure that are defined, or

all parts between stations at which there is no doubt as to what boundary

conditions and loading should be assumed.

However, because of limitations in computer budget or lack of definition

"*'-. of the adjacent structural parts, it may be necessary to establish a boundary

at which there is some doubt as -i what the support conditions are and

where the load path is. For example, if one assumes that the end of the cylinder

H coincides with the location of the lowest row of rivets shown in Fig.

116(b), one must then decide which of the displacement components u, v, w,

are to be restrained and at what radius is the axial load to be applied.

The purpose of this section is to reveal the sensitivity of predicted bifurca-

tion buckling loads to these assumptions.

It should be emphasized now that boundary conditions and eccentric loading

influence the stability, in particular the bifurcation buckling load, in two

ways:

(1) The prebuckling membrane stress resultants at a given load depend

on these facters; therefore the load-geometric matrix, K2 in Eq.

(123) of Ref.[430] depends on them.
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(2) The prebuckling deformations and the structural stiffness at the

boundary depend on these faf-tors; therefore the stiffness matrix,

K1 in Eq. (123) of Ref.[430] , depends on them.

We have already seen examples in which boundary conditions and edge load eccen-

tricity affect bifurcation buckling loads. Figures29 - 31 of Ref.[ 430] and 62

show how restraint of the radial displacement w at the edge gives rise

to local edge buckling in a monocoque axially compressed cylindrical shell

2
at a load approx.mately 20% less than te classical load, N = 0.6 Et /R.

Figures 64 and 65 demonstrate, for an externally pressurized spherical cap,

the influence of edge support eccentricity on the destabilizing prebuckling

hoop compression and therefore on the bifurcation buckling pressure. Figure

*68 and Table 3 show the effect of the stiffness of tha edge support on

bifurcation buckling. The emphasis in those examples is on the nonuniform

prebuckling behavior and how it influences the bifurcation buckling load

and mode.

Although not strictly true, it might be said for the sake of simplicity that

in general the boundary conditions affect the bifurcation buckling load and

mode most strongly through their influence on the stability stiffness matrix Ki,

whereas the load eccentricity affects the bifurcation buckling load and mode most

* strongly through its influence on the prebuckling state and hence on the load-

geometric matrix K2. This statement is probably more valid %:hen applied to

"cylindrical shells than to shells of other geometries.

"For example, the prebuckling state of a uniformly axially compressed fairly

"long monocoque cylindric-l shell loaded at its middle surface depends on the
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Lgundary conditions only within a "boundary layer" or a distance of approxi-

1/2mately two or three times (Rt) of the edge. The prebuckling conditions at

the edge have only a mild influence on the predicted bifurcation buckling

load, as seen in Figs. 2 9 - 31 of Ref. [43C] .However,there aeseveral different sets

*[ . of boundary conditions for which the prebuckling behavior and hence the load-

-• geometric matrix, K2 , is the same but the bifurcation buckling load and mode

-. shape change radically. For instance, any change in the boundary condition

having to do with the circumferential tangential displacement v, which does not

appear in the prebuckling problem at all, drastically affects the bifurcation

buckling load through changes in the stability stiffness matrix K1 only. A

-: dramatic example is an axially compressed cylindrical shell with free edges.

The axisymmetric prebuckling solution is still characterized essentially by the

* uniform compressive axial resultant N 10 P/27rR, but the ` rcation buckling

load P is several orders of magnitude smaller than the classical value because
cr

the possibility of inextensional buckling exists. A specific example of this

type of buckling is shown later, both for an axially compressed cylindrical

shell and an externally pressurized spherical shell.

On the other hand, the major effect of load eccentricity on cylindrical shells

under axial compression is to produce bands of prebuckling hoop compression or

tension as well as meridional curvature change. The load eccentricity effect

is especially signi icant in cylinders with axial stiffening because the

boundary layers near the supported edges are longer than they are in the

case of monocoque cylinders. Therefore, the circumferential tension or com-

pression generated in these boundary layers has an important effect on the

load-geometric matrix K2 and hence on the buckling load.

113



Summary

Buckling pressures for hydrostatically compressed monocoque cylinders will first

be discussed. The results tabulated here are derived from an analysis in which

the prebuckling state is given by membrane theory: axial resultant N10 = pa/2,

circumferential resultant N2 0  pa, no prebuckling deformation. Therefore, the

differences in critical pressures p and circumferential wave numbers n are
cr cr

entirely due to the effect of the various boundary conditions on the stability

stiffness matrix K in Eq. (123) of Ref. [4301. (Note that when we relate boun-

dary conditions to the stability stiffness matrix KI we are tacitly assuming

that the Lagrange multiplier method is being used as shown 'n Fig. 24 of Ref.

- [430] or that certain rows and columns of K have been modified to account for

the boundary constraint conditions).

_ Following is a discussion of the effect of boundary conditions on the buckling

of monocoque axially compressed cylinders. Most of the results correspond to

a rigorous nonlinear prebuckling analysis including edge effects, although a

comparison is given for one set of boundary conditions in which membrane theory

and exact bending theory are used in the prebuckling analysis. Again, the

differences in the critical loads corresponding to the various boundary conditions

arise primarily from the changes in the stability stiffness matrix K1 and not

from changes in the prebuckling state leading to modification of a load-

. geometric matrix K
2'

- -Examples of inextensional buckling of a stiffened cylindrical shell under axial

compression and part of a monocoque spherical shell under external pressure

are shown next. It is demonstrated that the critical loads can be several
N

orders of magnitude less than the classical values because very little strain

energy is required to deform these shells in their near-inextensional buckling

modes.

An example )f bifurcation buckling of a complex shell in the plastic range is

then given. Because of the local nature of the plastic flow near a stess con-
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- centration at a structural junction, an elastic model can be set up in which

the development of the plastic hinge is simulated in the stability analysis by

* modification of one of the compatibility conditions at the structural junction

where plastic flow occurs.

Some examples are then given of the effect of boundary conditions on the buckling

of stiffened cylindrical shells under axial compression. It is shown that

the effect of the boundary conditions has a significant influence over a larger

range of length-to-radius L/R than is the case for monocoque shells.

The section closes with examples of the effect of load eccentricity on bifurca-

tion buckling of axially stiffened cylindrical shells under uniform axial com--

pression. In particular the dependence of the critical load on eccentricity of

the load, length of the shell, use of membrane v. bending prebuckling analysis,

and external or internal location of the stringers are explored for a particu-

lar case.

Effect of Boundary Conditions on Buckling of

Monocoque Shells

Much of the early work on the effect of boundary conditions on the buckling of

cylindrical shells is reviewed by Hoff [ 29]. Von Mises [ 144], Nash[ 145],

Galletly and Bart [ 146], Singer [ 147] and Sobel [ 148] studied cylindrical

shells under uniform hydrostatic external pressure. Nachbar and Hoff [ 149],

Stein [ 150], Fischer [ 151], and Almroth [ 152] and others identified in

29] treated cylindrical shells under uniform axial compression. The most

definitive investigations were carried out by Sobel [ 148] and Almroth [ 152].

They assumed that buckling would be symmetrical about the midlength of the cylin-

der generator (not necessarily true in the case of axially compressed cylindri-
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cal shells), and they calculated buckling loads for eight boundary conditions

as listed in Table 8.

Cylinders Subjected to Uniform External Hydrostatic Pressure

Sobel [ 148] assumed a membrane prebuckled state. His results are listed in

Table 9 for different values of length-to-radius L/a with radius-to-thickness

a/h fixed at 100 and Poisson's ratio equal to 0.3. The set of boundary con-

"- ditions represented by Sl(w = M N v = 0) is the same as that used in
x x

von Mises' solution [ 144] for a simply supported cylinder. The results

of Sobel for the set SI agree with von Mises' results to four significant

figures, the degree of accuracy used in Sobel's analysis. Table 9 also

! gives the results obtained by Nash [ 145 ]and by Galletly and Bart [ 146] for

v' clamped cylinders. The combination of boundary conditions used in Refs.
4•..

[ 145, 146] is here represented by the set C 4( w = w = u = v = 0).

From a comparison of results for C and S we see that restraint of meridional
4 4

rotation w does not significantly increase the critical hydrostatic pressures

unless the cylinders are quite short. Moreover, this same result is always

obtained whenever critical pressures for cylinders with w = 0 are compared

Xr".'•[[•',_with those for cylinders with Mx = 0 (edge moment = 0), all other conditions

S•beir g equal.

The most significant result of Sobel's analysis is the revelation of the important

* effect of axial restraint u = 0 on buckling pressures even for moderately long

"cylinders. Table 9 is organized to emphasize this effect, the first four columns

"of results corresponding to u free (N = 0) at the edge and the next four to

u fixed.
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'O Cylinders Subjected to Uniform Axial Compression

Almroth [ 152] accounted for prebuctling bendirg in his analysis, which in-

cludes buckling under combined axial compression and internal or external

lateral pressure. Computed critical values of the axial load for the case of

zero lateral pressure are shown in Table 10. For compa.:ison corresponding

results were also obtained by Almroth with use of the membrane prebuckling solutio

"With boundary conditions corresponding to cases S3 and S4, (M = 0, N 0)
x xy

these results differ very little from those listed in Table 10. In the

other six cases the critical load withthe membrane prebuckling solution, within

the parameter range considered, is equal to or insignificantly higher than

the classical buckling load for simply supported cylinders (NcrN = 1.0).
cr cl

It appears from Table 10 that, with the exception of very short shells, the

critical load is practically independent of the parameters r/t and L/r in

all of the cases. In contrast to expectations, lower values of the critical

load are in some casec found for the very short shells. Therefore, the influence

of the shell length on the critical load was studied in more detail. The criti-

cal load vs the parameter L/r, for a cylinder with r/t = 100 and with boundary

conditions corresponding to case C2, is shown in Fig. 117(a). Here the num-

ber of circumferential waves is held constant (n = 8). For long shells the criti-

• cal load is independent of shell length, and for very short shells the criti-

cal load is, as expected, monotonically increasing with decreasing shell length.

In the intermediate range an oscillatory behavior is displayed.

A similar variation of the critical load with L/r occurs for the cases S3 and

S4. In Fig. 117(b) the critical load is shown vs L/r for case S3. It is

seen in this case that the general behavior does not change when the influence
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of lateral restrzint in the prebuckling analysis is neglected. For rela-

tively long cylinders the curve with the membrane prebuckling solution is slightl:

-* below the riqorous solution. However, for very short cylinders this differ-

ence increases, as may be expected.

The most significant results obtained by Almroth are those corresponding to

S3 and S4, for which the circumferential tangential displacement v is

free (N = 0). This result, first calculated by Stein [ 150], is similar
xy

to that obtained by Nachbar and Hoff [ 149] for axisymrretric buckling of

an axially compressed cylinder with a completely free edge. However, neither

type of free-edge buckling is likely to occur in practice because friction at

V. the ends of the axially compressed cylindrical shell is sufficient to pre-

vent the buckling modes from developing.

"Inextensional Buckling

Even lower buckling loads for axially compressed cylindrical shells than

those calculated by Almroth [ 152] are possible if one assumes that the

edges are completely free. Cohen [ 96] was the first to point this out.

The critical buckling node is antisymmetric about the midlength of the

cylinder and involves no change in curvature of the generators. This mode is

of course prevented if the buckling modal displacement pattern is assumed to

be symmetrical at the symmetry plane at the cylinder midlength. The buck-

ling mode is inextensional; that is, the middle surface undergoes no stretch-

*O ing. Therefore, the membrane component of buckling modal strain energy is

zero. Again, this mode is unlikely to occur in tests of axially compressed
cylindrical shells because of friction.
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Buckling loads associated with inextensional mode shapes can be very low

indeed, as shown in Figs. 118 and 119. Figure 118 gives buckling loads

of an axially compressed 0 cone (almost a cylinder), supported at its edges

by rings of square cross section. The buckling mode with n = 2 circumferen-

tial waves is inextensional if the edges are free and very close to being

inextensional for all ring sizes. Figure 119 shows buckling pressures of

incomplete spherical shells with edge rings of various areas. Again, unless

the ring is fairly large, buckling loads may be many orders of magnitude

"smaller than the buckling load for a clamped or simply supported shell of

the same geometry.

A physical appreciation of inextmnsional behavior can be gained by cutting

a ping-pong ball in half and squeezing one of the halves between your fingers.

Large deflections occur with very small applied force. A coffee cup dis-

pensed from a vending machine is made with a reinforcing ring at the top to

limit the amplitude of inextensional deformations caused by the squeezing pres-

sure of your fingers required to keep the full cup from dropping to the floor.

A conical planetary reentry vehicle, such as the Viking shell (Figure 190 ),

is designed on a similar principle: potentially large inextensional deforma-

tions caused by nonsymmetric reentry pressures are prevented by a large edge

ring.

Because of the small amount of energy required to deform shells inextension-

ally, designers should avoid configurations in which inextensional deforma-

tions of the wall are free to occur in systems subjected to destabilizing

loads. Analysts investigating buckling of shells should avoid the use of

boundary conditions that might permit inextensional buckling unless these

conditions represent the actual support. It is the writer's experience that

users of BOSOR4 [ 14 ]have had difficulty when leaving some branch of the

119



structure free at the end because "it's not the part I'm really interested

in." Often the lowest eigenvalue corresponds to large buckling modal dis-

placements atthe end left dangling. The user is not able to obtain buck-

ling in the region of his concern without restraining this troublesome end.

* Simulation of Effects of Local Plastic Flow by Appropriate Constraint Conditions

There are two reasons for including this discussion here. The first is stated

in the subtitle: to dIescribe a certain application of constraint conditions

as a modeling technique to simulate a condition in which plastic flow has

occurred without actually accounting for this flow explicitly. The other

-.- ' reason is to demonstrate the appropriateness of soiietimes using different

- constraint conditions in the prebuckling and bifurcation buckling phases of

an analysis. The phrase "constraint conditions" is used rather than "boun-

dary conditions" because the phenomenon described here has to do with con-

ditions at a junction between two s" ru-tural segments rather than at an edge.

Figure 120(a) shows the geometry of three specimens tested by Galletly

154] and analyzed by Bushnell and Galletly [ 131]. These specimens were

* -" subjected to external pressure. One of the buckled specimens is shown in

"Fig. 120(b). A discretized BOSOR5 model [ 47] is shown with the axisymrftric

* prebuckling deformed shape in Fig. 120(c). Plastic flow occurs before bifur-

"cation buckling in a very narrow circumferential band surrounding the meridion-

al slope discontinuity between the conical and cylindrical segments. Figure

120(d) shows predicted bifurcation buckling modes and pressures for models

in which the elastic-plastic flow is explicitly acco.tz. for and compatibility

of meridional rotation at the junction between segments (2) and (3) is enforced

in both the prebuckling phase and bifurcation buckling phase of the analysis.
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Table 11 lists the test results, the BOSOR5 results with use of elastic-

plastic analysis, and predictions in which plasticity is ignored but an attempt

is made to simulate its effect by modification of the compatibility conditions

at the junction between segments (2) and (3). It is seen that for the configu-

"rations investigated a good elastic model is one in which meridional moment

"compatibility at the cone-cylinder junction is enforced in the prebuckling

analysis but relaxed in the stability analysis (Case 5). That the predicted

buckling loads are close to the test values for this simplified elastic model

apparently is the result of two counteracting errors: The prebuckling model

is too stiff and therefore at a given pressure the stress resultants, which

appear in the stability equations, are too small. Counteracting this effect

is the underestimation of the meridiornal bending rigidity at the junction

in the stability analysis. Clearly both effects are important, since intro-

duction of the hinge in the prebuckling analysis lowers the predicted buck-

ling pressure considerably, and enforcement of elastic meridional moment com-

patibility in the stability analysis raises it considerably.

A similar result is obtained for the case of externally pressurized tori-

spherical heads pierced by cylindrical nozzles as shown in Figs. 121(a-d).

Plastic flow occurs in the immediate neighborhood of the nozzle-head junc-

tion. Comparisons of predicted and test buckling loads are shown in Figs.

121 (W)and (d) and listed in Table 12. The same modeling "trick" yields

good results for this geometry. Further details on geometry, material proper-

ties, and discretization are given in Ref. [ 131].
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Effect of Boundary Conditions and Loading

Eccentricity on Buckling of Axially Compressed Stiffened Cylindrical

Shells

Boundary Conditions

We have seen from Table 10 and Figures 117(a) and (b) that the influence

of shell length on the buckling of axially compressed monocoque cylindrical

shells is very small unless the shell is extremely short. This is not true

for cylinders stiffened in the axial direction, as seen from the example in

"Fig. 122 (a). Buckling loads are given there for clamped axially compressed

cylinders of various lengths with a wall construction consisting of a longi-

tudinally corrugated sheet welded to an inside smooth sheet (Fig. 122 (b)).

The internal Z-shaped ring stiffeners are heavy enough to cause local

buckling as shown. The asymptote represents the predicted buckling load of

a simply supported bay 15 inches long. Intuitively, it is surprising that

the clamping condition at the edge significantly affects the critical load

for cylinders with many bays. Since buckling occurs between rings, one might

think that the critical load would approach the asymptote much more rapidly

as the number of bays is increased. However, the theoretical results shown in

Fig. 122(a) have been confirmer' by tests, as will be described.

Figure 122 (c) helps to explain the slow convergence. The nonsymmetric mo-

ment applied at the simply supported edge simulates the effect of clamping

"there during the transition from an axisymmetric prestressed state to a post-

•,,.. buckling state with 16 circumf• rential waves. Our intuition of what length

of cylinder is required before the buckling load becomes independent of

length is based on the more familiar but much shorter axisymmetric boundary

layer length, -3 R also illustrated in Fig. 122(c) in the frame•.ff
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'O labeled "n 0." (t is the effective thickness of a monocoque wall
eff

with the same axial flexural rigidity as the a.dally stiffened wall.)

The length effect demonstrated in Fig. 122(a) has been confirmed by
-" - tests. The panel photographed in Fig. 123(a) failed at 2550 lb/in

axial compression in a mode predicted by the BOSOR4 computer program to

occur at 2800 lb/in with 13 circumferential waves. The theoretical buckling

mode is shown in Fig. 123(b). A much longer panel (116 in. instead of

52 in.) with t=0.02 in, t = 0.032 in. and with rings on 15-in centers buckled

at 1580 lb/in compressior. compared to a predicted buckling load of 1680 lb/in

in a mode with 16 circumferential waves.

O Ignorance of the length effect might result in designs which are not optimum

with respect to weight. For example, the dimensions of the corrugated semi-

"sandwich wall ccihstruction shown in Fig. 122(b) may be arrived at by an

assumption that local crippling, such as illustrated in Fig. 124, is to

occur at the same axial load as inter-ring buckling, such as shown in Fig.

122 (a). If the critical load level for inter-ring buckling is calculated

with the assumption that the panel is of length equal to the ring spacing

and is simply supported at its ends, then the local dimensions of the wall

cross section will be established based on a critical load equal to that indi-

cated by the asymptote in Fig. 122(a). However, actual panels u3ed in a

practical structure contain a finite number of bays and may be effectively

clamped at certain bolted connections, as shown in Fig. 125(a). Because

of the significant length effect displayed in Fig. 122(a), these structures

will cripple in a mode such as that photographed in Fig. 124 before buckling
in general instability modes involving both skin and corrugations such as those

shown in Figs. 122(a) and 123.
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The fact that the critical load plotted in Fig. 122(a) approaches the

asymptote rather slowly makes it very difficult to desiqr test specimens

properly. Cost usually dictates the use of rather short specimens. Fig-

ure 125 gives an example of the problem. An actual shroud is pictured

in Fig. 125(a). It was desired to determine experimentally the effect

of the field jo'nt depicted in Fig. 125(b) on the buckling load corres-

ponding to the type of general buckling indicated in Fig. 123. Figure

125(c) shows the sad results: the test panel failed in a crippling mode

at N = 1620 lb/in., far below the predicted critical load of N = 3450.•cr cr

corresponding to general instability, and well below the predicted load Ncr

2287 lb/in for a similar specimen without a field joint. Figure 125(d)

shows prebuckling behavior of the specimens with (A* and witho)ii- (R) ihe

Sfield joint. Early crippling near the edge at N = 1620 lb/in, whichcr

"occurred in both tests of pan 1- with and without the field joint, is due to

the lccal biaxially compressive stress field there, as proven in Ref. [ 31;

where other details are given.

In general, engineers interested in designing a particular segment of a

larger structure should make every effort to determine as accurately as pos-

sible the actual boundary conditions at th, ends of "their" segment. Portions

"of the adjoining segments should be included in the model, possibly with a

* Qcruder mesh. If little is known about the adjoining structures, sensitivity

stuCies should be performed in which both upper and lower bounds on the

degree of boundary constraint are assumed. Before expensive test specimens

. are fabricated analytical simulations of the test should be performed, with

proper representation of the boundary conditions to be applied and account

for the possibility of local buckling. The effort in building and testing

L 124
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' the rather expensive panel shown in Fig. 125(c) was largely wasted be-

cause the question, "What effect does the field joint have on general in-

stability?", was not answered due to early failure in an unexpected mode.

Singer and his coworkers have been contributing for several years to our

[ knowledge of tht buckling and vibration behavior of stiffened cylinders under

axial compression [ 156 - 158]. They have been focusing their efforts on

the effects of boundary conditions and load eccentricity. Tables 13 and

14 show comparisons between test and theory for cylinders of the type shown

in Fig. 21 supported at the edges as illustrated in Fig. 116. The theo-

"retical results were obtained with the BOSOR4 computer program [ 14]. A

typical buckling mode is shown in Fig. 21. It appears that the actual

j support condition pictured in Fig. 116 can most accurately be simulated

by SS3 (classical simple support) rather than by the other postulated end

conditions, although as Singer points out [ 158] the picture is complicated

by the presence of load eccentricity.

"Figure 126, which is analogous to Fig. 122(a), demonstrates the effect

of cylinder length on the critical axial load. The figure shows results from

analyses in which the prebuckled state is predicted from membrane theory

(labeled linear) and from BOSOR4 [ 14] and a treatment by Block [ 159] in

* which the prebuckled state is derived from a rigorous analysis. As with

"all of the examples in this section, the axial stiffeners are "smeared out"

"over the circumference in the manner described in the classical paper by

*O Baruch and Singer [ 160]. Two important points might be made with regard

"to the results shown in Fig. 126;
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"(1) For long shells nonuniform prebuckling effects are unimportant;

and

(2) The effect of constraint of axial displacement u in the bifurca-

tion buckling analysis is rather significant even for long

shells.

This behavior may be contrasted to that of monocoque axially compressed

- ylinders. The columns headed "S1" and "S2" in Table 10 correspond to

what Singer calls "SS4" and "SS3", respectively. In the case of monocoque

cylinders the normalized critical load predicted with a model in which

*-• nonuniform prebuckling effects are included is reduced from 1.0 to approxi-

j- mately .85 even for infinitely long shells because the buckling modal

displacements occur in and near the "boundary layer" near th" edge as shown

S-. in Fig. 62. Buckling with such a short axial wavelength is not possible

for axially stiffened cylinders because of the bending stiffness of the

" stiffeners. Therefore, stiffened cylinders buckle as shown in Fig. 21 in

-- the region where the prebuckling state is pure axial compression. Inclusion

of prebuckling bending is important only if this nonuniformity occurs over

most of the shell length. Comparison of the columns headed "Sl" and"S2"

in Table 10 reveals that the axial component of edge restraint has a much

"smaller influence on the critiLa! load for the monocoque shell than for the

stiffened shell to which Fig. 126(b) applies.

Figure 127 demonstrates the effect of elastic axial restrain.. on predicted

buckling for one of Singer's specimens. Further details are given ir.
0

Ref 33 ].
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Load Eccentricity

One of the first studies of the effect of eccentricity of axial load on the

buckling of axially compressed cylinders is reported in Ref. [ 161].

Singer and his colleagues have published several papers on this topic

"[ 156 - 158]. The examples exhibited here are taken from Ref. [ 153].

The definition of axial load eccentricity is somewhat arbitrary. inger

* [ 156] defines any axial load that is not applied at the middle surface

of the skin as eccentric. Almroth and Bushnell [ 153] use the neutral

"surface of the skin and stringer combination as a reference for load

A. eccentricity. Figure 128 (a-c) shows how load ec-2ntricity might be delib-

O- erately introduced and varied in test specimens and how most axially stif-

fened cylindrical shells are actually tested (d).

The remainder of the discussion in this section is based on axially com-

pressed axially stiffened cylindrical shells with geometry shown in Fig.

129. (Noce that the stringers may also be external.',

Results for cylimdrical shells of length 95 in. are listed in rable 15.

Critical axial loads were computed for the cases in which the shells were

simply supported (S2) at the midsurface of the skin, at the neutral surface of

the cross section, and at the midpoint of the rectangular stiffeners,

respectively. Clamped shells were also considered and, for each type of

loading, critical loads were obtained for shells with both external and in-

ternal stiffening.
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"For comparison critical loads are shown also as computed by use of the

membrane prebuckling analysis. For the buckling analysis classical simple

support conditions were assumed (S2 or SS3). Hence, there is no axial

restraint, and with a membrane prebuckling analysis there is no loading

"eccentricity effect. The results from the first three loading cases are

therefore identical.

It may be seen from Table 15 that changes in the loading eccentricity have

drastic effects on the critical load. For the case in which the shell is

. loaded through its neutral surface, for example, it is interesting to compare

"results obtained with membrane prebuckling analysis with those obtained with

nonlinear prebuckling analysis. The difference is due to the Poisson expan-

sion in connection with radial restraint at the edges. This effect is large

"for shells with such a small L/R (d/R --0.5) particularly for s 11ls with

- outside stiffening.

For shells with end moments it is easy to see that the presence of a moment

"which tends to bend the cylinder into a barrel shape greatly increases the

critical load. A moment in the opposite direction, developing prebuckling

compressive hoop stresses, has the opposite effect. In Fig. 130 prebuckling

radial displacements (uHo)and buckling modes (w) are shown for cylinders with

* inside stiffening. Curves are shown for loading through the neutral surface

as well as for loading through the center of the stiffeners.

LFor Lylindrical shells the effects of load eccentricity were studied also

"for the case in which the buckling displacements in the axial direction are

"restrained (u 0). The results are shown in Fig. 131. It can be seen

"that the critical load varies sharply with the position of the point of load
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application. For both large positive and large negative eccentricities

the critical load calculated with membrane prebuckling theory approaches the

critical load with clamped edges. This is because any rotation in the buck-

ling mode about the eccentrically located end points forces the shell wall

to deform in a mode with significant membrane strain energy due to axial

stretching and compression of the neutral surface.

For cylinders with external stiffening and small positive values of

the eccentricity parameter, the buckling mode is antisymmetric about the

midpoint of the shell. In all other cases it is symmetric.

The cylinders for which results have been given previously are quite

short, the decay-length for the edge nomen. Zeing about half the shell

length. It appears that the influence of edge moments disappears as the

shell length increases. This effect is demonstrated in Fig. 132, whiLh shows

critical loads as functions of shell length for cylinders loaded through the

neutral surface and for cylinders loaded through the centroids of the stif-

feners.

For very shallow toroidal segments a study was undertaken of the influente on the

critical axial load of the shell rise H (difference between radius at equator

and radius at edge. The analysis includes shells with positive shell rise

(positive Gaussian curvature) as well as shells with negative shell rise,

and the results are shown in Fig. 133. As expected, the critical load

increases with the value of the Gaussian curvature. At zero shell rise, the

cu.ve for shells with outside stiffeners is much steeper than the curve

corresponding to inside stiffeners. This result indicates that shells with

outside stiffeners should be more sensitive to initial imperfectiJons, which

has been shown by Budiansky and Hutchinson [ 162 ] to be the case.
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Section 5

INSTABILITY OF SHELLS OF REVOLUTION SUBJECTED

"TO COMBINED LOADS AND NONSYMNETRIC LOADS

"Summary

The emphasis in this chapter is on monocoque and stiffened cylindrical

shells.

Combined Loading

"We have already seen examples of buckling behavior under combined internal

S pressure and axial compression. Figures 105 - 108 display the buckling

"phenomenon of a conical water tank. Bifurcation buckling behavior of the

conical water tank is similar to that of a cylindrical shell with internal

pressure subjected to axial compression: The buckles are elongated in the

circumferential direction and the critical axial load is less sensitive to

initial geometric imperfections than that for the shell with no internal

"pressure. The diminished sensitivity to initial imperfections is revealed

by the results in Fig. 22 for pressurized cylindrical shells, as well as

by the excellent agreement between test and theory for buckling of the mylar

model of the water tank shown in Figs. 105 - 108.

This section first gives illustrations of post-buckled states of monocoque

cylindrical shells under combined axial compression and internal pressure.

Next several interaction curves are presented for monocoque cylinders subjected

to axial compression combined with internal or external pressure. These curves

cover a wide range of boundary conditions, radius-to-thickness ratio, r/t, and

length parameter Z = (1-V 2 ) 1/2 (L2 /rt) Post-buckled states of motiocoque

"-'-'Z,'cylinders under combined torsion and internal pressure are then depicted
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.' with an interaction curve including test points. This is followed by a com-

.* parison of theoretical and experimental buckling loads for elastic buckling

of stringer-stiffened and ring-stiffened cylindrical shells made of epoxy

and subjected to axial compression and external press.re. The section closes

with computed interaction curves for laminated composite cylinders under

axial compression, external pressure, and torsion.

Nonsymmetric Loading

Nonsymmetric loading on axisymmetric shells may originate from many sources,

commonly occurring ones being wind or water loads, thermal loads, and inertial

loads arising from ground acceleration during an earthquake. The section opens

with two examples of buckling of shells of revolution under nonsymnetric

• &.=d axial compression caused by launching a rocket and by its pass-

age at an angle of attack through the atmosphere. A closely related problem

is buckling due to nonsymmetric thermal loading from aerodynamic heating.

Comparisons between test and theory are given for a nonsymmetrically heated

ring-stiffened cylindrical shell with applied bending moments and for a mono-

coque conical shell heated along a narrow axial strip. The section closes

with prediction of a buckling load factor for a typical steel containment

vessel for a nuclear reactor under combined vertical and horizontal com-

ponents of ground acceleration experienced during an earthquake.
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Monocoque Cylindrical Shells Under Combined Loading

Axial Compression or Bending and Internal Pressure

Interest in this problem was stimulated primarily by concern for the proper

design of pressurized aircraft fuselages. Lo, et al [ 163] and Harris, et al

164, 36] obtained design curves by testing cylinders and by collecting

experimental data from previous tests and performing statistical analyses

to obtain buckling loads vs. radius-to-thickness ratio r/t for best fit,

90% probability of survival, and 99% probability of survival. Suer, et al

1 165] did the same for cylinders under combined bending and internal pres-

"sure.

Figures 13A (a-e) illustrate post-buckled patterns for cylinders under

axial compression or bending with various amounts of internal pressure. As

the internal pressure is increased the buckles become smaller and more

elongated in the circumferential direction. If the pressure is high enough,

buckling under uniform axial compression occurs in an axisymmetric mode, as

seen in Fig. 134 (e). Recall that in the case of the water tank shown in

"Fig. 105 nonsymmetric bifurcation buckling occurs at a load factor only

one percent below axisymmetric collapse (Fig. 107). The water tank prob-

* lem shares many of the characteristics of the buckling of a uniformly axially

compressed cylindrical shell with internal pressure.

"" Figures 135 (a-d) show coefficients b, Cbp, and ACp from Suer, et al

165] for buckling of cylinders under bending. Figures 135 (a,b) demon-

strate the scatter of test results plotted vs. radius-to-thickness ratio
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r/t for unpressurized cylinders, and Figures 135 (c,d) demonstrate the

stabilizing influence of internal pressure. The straight horizontal line

at C = .78 in Figs. 135 (a,b) corresponds to the theoretical result for

buckling of cylinders under bending found by Fltigge [ .166]. The straight

"inclined lines labeled "a = pr/2t" in Figs. 135 (c,d) represent the
cr

axially compressive stress required to cancel the tensile stress a = pr/2t
X

caused by itnernal pressure. The shape of the region of compression test data

indicated in Fig. 135(c) by a dashed closed curve shows in a rough way

"that critical axial loads for cylinders with higher internal pressure are

somewhat less sensitive to initial imperfections than are those with lower

internal pressure.

Almroth [ 152] calculated interaction curves for buckling under cumbined

axial compression and external or internal pressure. He accounted for edge

effects in the prebuckled state. Predicted critical load combinations are

"shown in Figs. 136 - 139 for the various boundary conditions Sl-S4 and

Cl-C4 listed in Table 8. In cases Sl and S2 (Fig. 136) the value of

r/t has practically no influence on critical combinations of the axial stress

and external pressure parameters, within the range of geometrical parameters

under consideration.

The analysis with the membrane prebuckling solution indicates that the dif-

ference in critical loads for cases S3 and S4 is negligible for all values

of the pressure parameter. However, in the presence of internal pressure the use

of a rigorous prebuckling solution leads to different results. This is

shown by the interaction curves in Fig. 138. With S3 or S4 boundary

conditions the number of circumferential waves corresponding to the minimum

critical load generally is two. For higher values of the pressure in case S3

this minimum occasionally occurs at a larger number of waves.
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In case S3 the cuvsshow that for most combinations of geometrical

parameters there exists a range of the pressure parameter within which three

solutions are obtained. Of course, when the axial load on the shell is in

creased under constant internal pressure, only the lowest of these solutions

"is meaningful.

For clamped cylinders, it was found again that the parameter r/t has no in-

fluence on critical combinations of the axial stress and pressure parameters.

It was found also that circumferential tangential (v) restraint at the edge

does not affect the critical load. Interaction curves for clamped cylinders

"are shown in Fig. 139.

"Torsion and Internal Pressure

The effect of internal pressure on the torsional buckling stress was first

considered by Crate, Batdorf, and Baab [ 167], who developed a semi-

empirical interaction formula

R + R =1 ( 38)
s p

"for combined pressure and torsion based on a limited series of tests. In

Eq. ( 38) R denotes the ratio of critical shear stress with internal pres-0e s

sure to critical shear stress under torsion alone, R = T /To, and R is
s cr oc p

the ratio of internal pressure to critical external pressure, R = p/Pocr
p oc

.- _ -Hopkins and Brown [ 168] derived a small deflection theoretical analysis

by modifying Donnell's original analysis for unpressurized cylinders. Their

theoretical calculations generally agree well with the experimental results

of Ref. [ 167] and substantiate the semi-empirical interaction curve. Harris
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et al [ 36] performed additional tests in order to extend the data to the

range of internal pressures and radius to thickness ratios of interest in

missile and aircraft design. They tested a total of 5 unpressurized and

15 pressurized model circular cylinders in torsion. For the inter-,ally

pressurized specimens, the longitudinal tensile stresses induced by pres-

sure were balanced by a compressive load. A photograph of a typical buckle

pattern for an unpressurized cylinder is shown in Fig. 140 (a) and for a

pressurized cylinder in Fig. 140 (b). As expected, the angle which the buck-

les make with the axis of the cylinder increases as the ratio of the in-

ternal pressure to the torque increases.

"In Fig. 141, the test data are compared to the interaction curve of Ref.

167]. In calculation of the values of Rs, the buckling stress ocr

for torsion alone was defined in [ 36] as the average of the experimental

values. In calculation of the values of R , the buckling stress for external

"p
lateral paressure alone was calculated from Ref. [ 169]. It may be seen

in Fig. 141 that the interaction curve adequately describes the behavior

of circular cylinders in torsion with internal lateral pressure. Based on their

data, Harris, et al [ 36] recommended for design the interaction curve of

Fig. 141.

. -

* It should be noted that the experimental data of Fig. 141 are for cylinders

under lateral pressure only and therefore the data indicate the direct benefit

"of internal lateral pressure on the torsional buckling stress. If, in addi-

tion, the cylinder is axially pretensioned to a stress of pr/2t by the internal

pressure on the cylinder heads, an additional benefit would result. It can

easily be shown by a Mohr's circle construction that a torsional stress of

0,707 pr/t is required before compression is induced in the skin of a hydro-

statically pressurized cylinder. At low values of pr/t, the benefit of the
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axial tension is relatively small At large values or pr/t the effect

of the axial stress induced by internal pressure can be expected to pre-

dominate.

Stiffened Cylindrical Shells Under Combined Loading

Tennyson [ 170]and his coworkers have performed tests on buckling of un-

stiffened and stiffened cylindrical shells made of epoxy plastic by a spin

casting technique that produces specimens of very high quality. In Ref.

170] they give comparisons between test and theory for elastic buckling

I IN of perfect and imperfect clamped shells under combinations of internal or

external hydrostatic pressure and axial compression.

0

Figures 142 and 143 show Tennyson's results for stiffened cylindrical

shells under axial compression and external pressure. The solid lines in

Figs. 142 (b,c) and 143 (b,c) represent theoretical predictions for per-

"fect shells from Ref. [ 170], with labels "outside" and "inside" in Yig.

142 (b,c) referring to the rings. There is little interaction effect

below p cr/P = 0.8 for the ring-stiffened specimens because the critical

buckling mode for pure axial compression (short axial wavelength) does not

at all resemble that for pure external pressure (single half wave along the

cylinder generator). On the other hand, there is a strong interaction effect

for the stringer-stiffened specimens because the critical buckling mode for

pure axial compression has a much longer axial wavelength than that for the

ring-stiffened specimen, this mode resembling that corresponding to buckling

under pure external pressure.
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Inspection of Figures 142 (b,c) and 143 (b,c) reveals that for many

of the specimens the theory of Ref [ 170] underestimates the actual buck-

ling loads. This discrepancy is probably caused by the representation of stiffen-

ers as if they were attached along single lines; that is, in the theoretical

model the stiffness is underestimated because the rings do not contribute

to the axial bending stiffness of the shell wall ..nd the stringers do not

contribute to the circumferential bending stiffness. Actually, the ýtiffeners

probably add considerably to the bending rigidity because they are integral

with the skin along finite arc lengths br2 (Fig. 142a) and b (Fig. 143a)r2s
of the shell wall. Bushnell [ 171] has found this effect to influence pre-

dicted plastic buckling pressures of ring-stiffened cylinders under external

hydrostatic pressure by as muoh as 13%. A larger effect would be expected

for elastic buckling than for buckling beyond the proportional limit of the

material because the softening nature of a yielding material generally renders

predictions insensitive to minor changes in the model.

Also worthy of note in Figs. 142 and 143 is the differing influence of

initial imperfections in the ring-stiffened as opposed to stringer-stiffened

specimens. In the range pcr/Pcr < 0.8, where short-axial-wavelength buckling
0

occurs in the case of ring-stiffened cylinders, axisymmetric short-wavelength

imperfections clearly weaken the shells. Similar axisymmetric imperfections

actually strengthen the stringer-stiffened specimens, however. Presumably

this is because the imperfections induce a prebuckling axial waviness, a sort

of circumferential corrugation that stabilizes the sh.lls, -much ao the.... -

symmetric prebuckling shape change in the heated cylinder shown in Fig. 69

postpones nonsymmetric buckling as demonstrated in Figs. 70 - 75.
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Buckling of Composite Cylindrical Shells Under Combined Loading

Definitions

By "Lomposite" is meant a shell with a wall construction for which the most

general integrated constitutive law is given by Eq. (205) of Ref L30].

Typically, the shell wall is made up of layers or laminae of orthotropic

material. Each lamina has principal material axes oriented at some angle

e with respect to the coordinate axes for the shell. An important subclass

of such composite shell walls is that for which the constitutive law is

given by Eq. (84) of Ref. [430]. This class contaans shells of revoluticn

with isotropic skin and rings and stringers that follow principal lines

of curvature that are "smeared out' in the mathematical model as described

by Baruch and Singer in [160]. Laminated shells of revolution, the plies of

which are all oriented parallel to meridians (6 = 00) and normal to meri-

dians (0 --100) also belong to this class. If the wall co"nstruction is sym-

metric with respect to a middle surface the "B" terms in Eq. (205) of Ref.

[430] vanish. Such laminates are termed "balanced" and the wall is called

"orthotropic." The more general constitu.;ive matrices given Eqs. (205) and

'84) of Ref. [430] are associated with wall constructions that are called

"anisotropic."

Previous Work Done

Tennyson [172] gives a survey of work done up to 1975 on the buckling of

composite cylinders. The earliest analyses were based on orthotropic theory

"( -terms ," Eq. (205) of [430] are zero) with membrane prebuckling theory.

The motivation of much of this early work was to calculate buckling loads of

ring and stringer stiffened aircraft fuselages and rocket boosters. One of

the first studies was performed by March, et al in 1945 [173] , who calculated

K "138



torsional buckling loads of plywood cylinders. Frequently referenced works,

primarily from the 1960's, on buckling of orthotropic and anisotropic

cylindrical shells include Refs. [ 174 - 190] and [ 101]. During the

late 1960's and early 1970's several computer programs were developed

11 - 14] that can be used to calculate buckling of composite shells

of revolution, including nonuniform prebuckling states predicted with use

of nonlinear theory. Jones and Hennemann [ 191] performed parameter studies

to determine the influence of nonuniform prebuckling edge effects on bifurca-

* tion loads of composite axially compressed cylinders. They found an effect

similar to that observed for isotropic cylindrical shells [ 152]. (See Fig.

117 (b)).

* Buckling Under Combined Loads

"Recently Booton and Tennyson[ 192] c d lculated interaction curves for buck-

ling of anistropic cylindrical shells under axial compression, external

. pressure, and torsion. Their results are summarized in Figs. 144 - 147.

"Prebuckling edge effects are accounted for in the analysis. All results ccr-

respond to a laminated shell with three layers (9, 0, -9), which is a very

unbalanced laminate and ordinarily does not represent a realistic design.

The axisymmetric imperfection assunied for generation of Figs. 144 (b) and

145 (b) has an amplitude of a tenth the wall thickness (p 0.1)Uand an axial

waveleng'-h corresponding to that of the axisymmetric buckling mode calculated

from classical theory (membrane prebuckling state). Note from Fig. 144(b)

that, as in the case of the ring stiffened cylindrical shell under combined

axial ccempression and pressure (Fig. 142 (c)), the axisymmetric imperfection

causes a reduction in the capability of the shell to carry the axial component

of the load but little or no reduction in its ;apability to carry the circum-

ferential (pressure) component. A similar result is evident in Fig. 145(b)

for the case of torsior combined with axial compression.
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The curves in Figs. 144(c), 145(c), and 146(c) in which theory and

test and compared are plotted in roordinate frames with R , R, and Rs.
p s

These quantities are respectively the ratios p /P*r, P /P* , and T /T-C 1..r c' cf cr cr cr

in which all quantILies refer to the imperfect shell and the starred quan-

tities are predicted buckling loads for an axisymmetrically imperfect

shell with no other load components acting on it. The amplitude of the

imperfection p is given by p = v26 /t, where 6 is the largest• .- rms rms

"root-mean-squared value of the imperfection determined from profile measure-

- - ments along several generators. The axial wavelength of the imperfection

is equal to that of the classical axisymmetric buckling mode. The coriela-

tion with test results is reasonably good, although the actual measured

S- .imperfection was not axisymmetric. Had the nonsymmetric nature of the im-

perfection been accounted for in the analysis, test and theory would doubt-

"- 4less have been brought into closer agreement, especially in cases for which

"the combined loading involves relatively large components of external pres-

sure.

Figure 147 shows the buckling interaction curve for axial compression and

- 2
external pressure in the range of small Z = L /rt. Tennyson, et al [ 193]

earlier demonstrated for isotropic shells the transition from concave to

convex interaction curves (as viewed from the origin) as Z decreases. The

* convex curves for Z < 20 cannot be predicted without use of a rigorous

prebuckling analysis.
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TOBuckling of Nonaxisymmetrically Loaded Shells of Revolution

Modeling Considerations

In many practical applications, shells of revolution are submitted to non-

axisymmetric dynamic loads. Computer programs for the nonlinear dynamic

analysis of nonsymmetrically loaded shells of revolution and parts of

-' " shells of revolution subtendiog less than 3600 of circumference have been

written by Stricklin et al [ 194], Klein [ 195], Ball [ 196], Underwood 197],
Huffington [ 198], and Hubka [ JJ. LiiLN =, i LIU ILdJ.Li PLUb

perform both static and dynamic analyses with expansion of the circumferen-

tial variations in trigonometric series. Underwood's, Huffington's, and

Hubka's perform dynamic analyses with division of the shell into two-

dimensional finite difference grids. All of these programs require the

same order of magnitude of computer time as any two-dimensional numerical

analysis of a shell of general shape, such as that performed by STAGSC

1 48].

The analyst may wish to embark on a parameter study of buckling of non-

symmetrically loaded shells of revolution but may have a limited budget

for computer costs. The following questions arise: When can the problem

be treated as static? When can the nonlinearities be neglected? When

"can the nonsymmetries be neglected? As with the axisymmetrically loaded

"shells discussed previously, statie stability phenomena fall into two

classes, nonlinear collapse and bifurcation (eigenvalue) buckling. If

the structure or loading is such that the shell collapses in a manner simi-

lar to that shown in Fig. '.5, for example, then one of the computer

. programs described in [ 194 - 199] or a general shell analyzer such as
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STAGSC [ 48] must be used for the analysis. If the shell fails by

bifurcation buckling, more questions must be asked: Is the behavior r

to bifurcation linear? Does buckling occur locally in some area where

the stress field is maximum compressive in some biaxial sense? If the be-

havior prior to bifurcation is nonlinear, as is true for bending of long

"cylinders diccussed in connection with Figs. 39 :nd 42, can the non-

axisymmetric nature of the problem be neglected? If The answer to the

"-. first two or the last question is affirmative, then a one-dimensional numeri-

"cal analysis such as performed by any of the computer programs described

in [ 47] or [ 11 - 14] can be used. If the prebuckling behavior is

linear the nonaxisvnmetrical prestrt .s can be determined by superposition

of stresses cause Fourier harmonic of the nonaxisymmetric load.

The program user can then select the meridian where he thinks buckling

will start and, assuming that the stress field along that meridian is

axisymmetric, calculate bifurcation loads from the same stability equa-

tions used for the treatment of axisymmetrically loaded shells. The pre-

buckling behavior may be nonlinear but rotation of the shell wall about

a meridian (p in Fig. 17 of Ref.[ 430] )may be small. If the analyst feels that

this nonlinearity cannot be neglected but that the nonsymmetry can,

then the bifurcation buckling analysis can be perfoimed with a one-dimen-

sional numerical analysis as described in Ref. [430] This type of modeling

• simplification was used to generath the predictions of local failure of

the rocket payload shroud shown in Fig. 5. The results are discussed

in connection with Figs. 8] and 82.

"W•hether or not the prebifurcation behavior is linear depends, of course,

on the case. As for bifurcation buckling, it is generally true that if the

maximum compressive stresses do not vary much in the circumferential direc-
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.. *~.tion within one-half of a buckling wave, then the eigenvalue will not be

*• .sensitive to the nonsymmetry of the prebuckling stresses. Bushnell and Smith

200] present a limited study on the sensitivity of predicted thermal buck-

ling loads to the circumferential variation of prebuckling compression.

The Lritical loads are surprisingly insensitive to this variation in the

cases studied, as will be seen.

Examples of Buckling of Nonsymmetrically Loaded Shells of Revolution

Figures 148 and 149 show tTo examples in which buckling under nonsym-

"* .' metric loading can be estimated by a one-dimensional numerical analysis.

The short cylinder depicted in Fit 148 represents a portion of a rocket

*- subjected during launch to a nonsymmetric combination of aAial compression

V and external pressure p. The buckling load factor of 1.8 and the buckling

mode were predicted from a model in which the one-dimensional discretiza-

tion is around the circumference of the cylinder rather than along its

"generator. The short, simply-supported (S2 in Table 8) cylinder is modeled

as a toroidal segment with a very large radius b from its axis of revolu-

* -tion to its center of meridional curvature. The prebuckled state is cal-

culated from membrane theory. This modeling technique, conversion of a

"simply-supported prismatic shell or panel into a toroidal segment, is

described in detail in [ 82] and in a later section here.
0

Figure 149 shows nonsymmetric pressure loading on the rocket payload

shroud depicted in Fig. 5kd). The pressure distribution, measured in

a wind tunnel, corresponds to a small angle of attack. The payload shroud,

"attached to a heavy motor stage at its aft end, bends as a beam and the

side under maximum axial compression, the leeward side, buckles between

discrete rings. (Buckling does not occur at the root of the beam because
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the shell wall is made of thicker gage material there, as indicated in

"Fig. 5(a).) Here the one-dimensionality of the model is preserved as

follows: The nonsymmetric prebuckling state, including bending, is cal-

culated from linear theory; the buckling load and mode are then obtained

from an analysis in which it is assumed that the prebuckling stress dis-

tribution along the meridian on the leeward side of the shroud is axisym-

"metric.

The two very different models described in connection with Figs. 148 and

* 149 lead to preservation in the stability analysis of different aspects

of the nonuniform, nonsymmetric loading: the torus model (Fig. 148)

leads to preservation of the effect of the circumterential nonuniformity

of the prebuckling membrane stress in the stability analysis but neglect

of its variation along the meridian; the shroud model (Fig. 149)

leads to preservation of the meridional variation of the prebuckling mem-

S..-" brane stress but neglect of its circumferential nonuniformity in the

' . stability analysis. The torus model is inadequate for the analysis of the

payload shroud because of the axial variation of wall properties, the

discrete rings, and the fact that the critical buckling mode corresponds

"to buckling between the rings, rendering invalid the option of smearing

them out. A measure of the error induzed by treatment in the stability

phase of the problem of the prebuckling stress state along the leeward

meridian as if it were axisymmetric can be obtained by setting up a torus

model of a short segment between two adjacent rings and comparing critical

loads correspondiag to two prebuckling stress states, one in which the pre-

stress varies around the shroud circumference as cosO and the other in which

"it is axisymmetric. Because of boundary effects which propagate along the
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shroud meridian as emphasized i, the discussion associated with Fig. 122,

the absolute values of the two buckling load factors may be inaccurate.

"- However, their relative difference should yield a gcod qualitative esti-

mate of the error induced by neglect in the stability phase of the problem

* -. of the circumferential variation of prestress.

Thermal Buc]:li.., ZýnLtetrc ally Heated Shells

"Introduction: Interest in thermal buckling of thin shells was originally

motivated by design requirements for high-speed aerospace vehicles. More

recently important ap.lications include thermal buckling of nuclear reactor

components and storage tanks for liquid natural gas. Several investigations

* in this field were made in the late 1950's and early 1960's. Hoff [ 201]

very clearly discussed various aspects of thermal buckling from the points

of view of the effect of temperature on material properties, creep, and

the effect of nonuniformity of temperature distribution in a structure.

We have already seen several examples of buckling due to axisymmetric heat-

ing (Figs. 69 - 76). This section is concerned with buckling under

nonaxisymmetric temperature distributions.

The early work on thermal buckling of shells deals with monocoque and ring-

stiffened cylinders. Anderson [ 100] gives a brief survey of the work done

prior to 1962. He established two classes of problems: buckling of

*• cylinders due to circumferential stresses that vary in the axial direction

and buckling due to axial stresses that vary in ihe circumferential direction.

Solution of the first class of problems is motivated by supersonic and hyper-

sonic airframe design involving frame-reinforced fuselages in which the
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"thin skin heats up rapidly while the more massive frames remain relatively

S..! cold. Radial expansion of the skin is thus prevented in the neighborhood

"* of the frames, giving rise to hoop compressive stresses that vary rapidly

- .. in the axial direction. These local compressive stresses can cause buckling,

*-:' as we have already seen in the case of the uniformly heated clamped cylin-

S- 'der (Figs. 73 - 75). Solution of the second class of problems is also

motivated by highspeed airframe design, with the emphasis in this case on

the fact that because the aircraft is at some angle of attack, the skin

heats up nonuniformly around the circumference. The circumferential gradient

gives rise to axial stresses which if compressive can cause buckling.

A number of papers has been written on the thermal buckling of axisymmetri-

- cally heated ring-stiffened cylinders. Hoff [ 98] calculated buckling

loads for cylinders with hoop stresses which vary in the axial direction.

Johns [ 99] obtained buckling loads for cylinders with compressive line

loads, simulating the effect of a cold ring attached to a hot shell. The

- ..- analyses of Hoff and Johns include the effect of rings as either clamping

"* '[-"or simple support or as compressive line loads. Anderson [ 202] included

the flexibility of the rings in an analysis of buckling of ring-stiffened

cylinders under combined axial compression and heating. Buckling charts

are given in Ref. [ 202]which cover a wide range of cylinder proportions

with boundaries either clamped or simply-supported. Chang and Card [ 101]

"calculated buckling loads of ring and stringer-stiffened cylinders under

"combined axisymmetric axial compression and heating. The rings are treated

as discrete elastic structures., Bushnell [ 102] used a finite-difference

energy method to calculate stress and buckling of ring-stiffened shells of

"revolution sub3ected to combined axisymmetric. pressure, axial load, and non-

uniform heating..
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There also exists a rather large body of work on buckling of cylinders

"heated nonuniformly around the circumference. Abir and Nardo [ 203] con-

cluded that the axial buckling stress under circumferentially variable ther-

mal stress conditions is close to the critical stress of the uniformly

compressed cylinder if the variation of the intensity of the thermal stress

is not large within a half-wavelength of the buckling pattern.

Hill [ 105] performed tests and analyzed aluminum and steel cylinders heated

on very narrow axial strips of a given w-idh. The prebuckling stress in the

shell is calculated assuming that the cylinder is infinite. Hill tested

his shells with boundary conditions intending to simulate simple support

and clamping. However, only the simple support case represents a valid

test, since his "clamping" support rig was far too flexible to prevent end

* "- motions of his 48-in. long specimens. Ross, Mayers, and Jaworski [ 106]

extended the experimental work of Hill, studying buckling of clamped cylin-

ders heated uniformly along axial strips of various widths. As might be

expected, the analytical and experimental results of Hill and Ross et

al. indicate that uniform circumferential heating (with restraint against

axial expansion) leads to lower buckling temperatures than does heating

along a rather narrow axial strip.

* Some work has been done on the more complex problem of determination of

-•. thermal stress and buckling of ring-stiffened cylinders in which the

temperature varies in both the axial and circumferential directions and

* in which the shell and rings are at different temperatures. Anderson and

Card [ 204] studied thermal stress and buckling of stainless steel ring-

stiffened cylinders sub jected to a combination of bending and nonuniform
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heating. They obtained the thermal hoop prestress in the cylinder from

the analysis of Ref. [ 202]. The thermal axial prestress was calculated

from an analysis in which the cylinder is divided into a number of bays,

* .the axial stress being assumed independent of the axial distance within each

bay and variable from bay to bay. P-a3onably good correlation was obtained

* between test and theory. Holmes performed tests for thermal stress [ 205]

and buckling t 206] of ring-stiffened cylinders subjected to nonuniform

heating and axial compression.

Less work has been done on the problem of predicting thermal stress and buck-

"ling of conical shells. Lu and Chang [ 207 ]calculated thermal prestress

distributions and bifurcation buckling loads of axisymmetrically heated

- clamped cones and nonsymmetrically heated simply-supported cones. They per-

"formed several parameter studies in a range of geometry for which the coni-

cal shell behaves essentially as would an equivalent cylindrical shell. In

further work Chang and Lu 1 208] analyzed thermal buckling using non-

linear equations to determine early postbuckling behavior of axisymmetrically

heated shells. Bendavid and Singer 1 209] performed an analysis of conical

shells heated no-uniformly along an axial strip. They applied the Ritz method

with Hill's technique [ 105] of using a ý-.ape factor to increase rate of

convergence of the series expansion of the buckling modal displacem*fnts in

* the circumferential direction.

.-- -.

"•Most of the work just cited predates the development of rather general com-

"puter codes for the analysis of shells of revolution. Thermal expansion

effects are included in computer programs written by Cohen [ 11], Kalnins

121,Svalbonas [ 13] and Bushnell 1 14, .47], The analytical results

of this section were obtained with BOSOR [ 14]. In the following text t1,

phrases "critical temperature" and "buckling temperature" mean the same
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thing: the bmallest eigenvalue or bifurcation point. "Temperature"

[- denotes the temperature rise above the ambient or zero-stress value.

Convergence checks were made in all cases by calculation with increasing

'. numbers of nodal points and Fourier harmonics. The solutions giver, in the

following sections would change by no more than one or two percent if the

given numbers of harmonics and mesh points were doubled.

Anderson and Card Tests f 204 1: One of the tests in the Anderson and

Card series was simulated with the BOSOR code. Cylinder 9 in the test

"series was chosen for comparison, since Ref. [ 204] contains all the input

"" - data required for this particular specimen. The cylinder which was rigidly

* clamped at one end and supported by a very heavy ring at the other, was

subjected to pure bending and then heated rapidly over a portion of its

surface until buckling occurred. Figure 150 shows the input data for

the determination of thermal stress. The outer (faying) flanges of the

z rings were considered to be at the same temperature as the shell skin

at the ring attachment points, and the ring webs and inner flanges were

assumed to be at room temperature. The very large ring at the end of the

shell was assumed to be rigid but free to translate and rotate as a rigid

body. Temperature distributions along the shell lengt and around the

circumference were supplied to the BOSOR program directly from Ref 1 204].

The circumferential Fourier series expansion of the temperature is calcu-

lated in BOSOR, and the result of a 20-term expansion is shown as a dotted

line passing through the data input points in Fig. 150(b). Thermal

stresses were obtained for this distribution. The rings were created as

discrete elastic structures with all components of moment and product of

inertia accounted for. The shell was analyzed in two segments, with 91 nodal

149



prints in the segment between rings 3 and 5 and 43 nodal points in the segment

between rings 0 and 3.

Figure 151 shows circumferential distributions of axial thermal stress

at the middle of the bay between rings 1 and 2 (x = 16.5) and at the middle

of the bay between rings 4 and 5 (x = 2.224). Unfortunately, no test resuits

are presented in Ref. [ 204] corresponding to the heated part of the cyl-•nder.

.5..

To compute the buckling load factor the following procedure was used: the axial

stress given in Table I of Ref. [ 2041(-19.1 cos0)was added to the thermal

stress distribution derived by BOSOR. The generators with the highest compres-

sive axial stress resultant correspond to 0 = ±400. The distribution of axial

and hoop stress resultants along these generators is therefore used in the

stability equations. Buckling loads for various circumferential wave numbers

are calculated with the assumption that the axial load and temperature vary

proportionally. Because of the rather stiff ring there, stability boundary

conditions are introduced to permit antisymmetric buckling at the symmetry

plane shown in Fig. 150(a). The minimum theoretical buckling load corre-

sponds to n = 16 circumferential waves and an axial load-temperature com-

bination factor X equal to 1.41 times that obtained expezimentally. Buck-

ling is predicted to begin in the bay between rings 4 and 5 at the genera-

tors located ±400 from the generator at 0 = 0 corresponding to maximum heat-

ing. Maximum compressive stress resultants occur at 0 = 40 because of the

large thermal gradient between 500 and 700 apparent in Fig. 150(b). Figure

152 shows the predicted buckling mode. Agreement between test and theory would

do•-•icss bc improved by treatment of the ring webs as flexible shell branches,
a technique which will be discussed later (Figs. 182 - 185).
Simply-Supported Cylinder Heated on an Axial Strip: Hill's test [ 105]

on simply-supported steel cylinders heated uniformly on a very narrow axial

strip afford a good check case for the BOSOR computer program, since the bound-
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•% ary conditions are easily modeled and the problem of finite flexibility of

supposedly clamped boundaries does not arise. Hill tested 48-in.-long cylin-

•. ders with diaphragms in the ends. Some cylinders were tested with one dia-

phragm at each end and some with two diaphragms at each end located 4 in.

apart as shown in Fig. 153. The cylinders were otherwise unsupported

during the tests. Hill records that the specimens with one diaphragm at each

end did not buckle as expected. Instead a ridge formed directly under the

heat lamps with subsequent plastic flow. To prevent this nonlinear behavior

Hill introduced an additional diaphragm four inches from each end of the

cylinder. Figure 153 gives the shell geometry and heating distribution with

plots of normal displacement w and axial stress resultant N corresponding
x

to T = 1.0°F. These results were obtained with the BOSOR code with 40 Fourier
0

harmonics being used for the expansion in the circumferential direction end

134 nodal points in the axial direction. The diaphragms were modeled as dis-

crete rings rigid in their planes and of zero stiffness for bending normal to

their planes. The results are in agreement with those obtained by Hill [ 105].

It is seen that Hill's assumption of an infinite cylinder is va'id for the

specimens with two diaphragms at each end of the 48-in. specimen. The forma-

tion in the one-diaphragm case of an axial ridge directly under the heating

lamps is also predicted by the BOSOR theory. As seen J.n Fig. 153, this

0 0-3ridge occurs over a range of 0 of -40 < 0<400 and is about 10 in from

trough to peak for each degree F temperature rise. No ,ch ridge is ore-

dicted to occur for the two-diaphragmn model.

The straightforward way to use BOSOR to calculate buckling loads for the

cylinder heated on a strip would be to assume the axial stress N (x,0) at
x

0 = 0 is axisyrmetric and to use this distribution in the stability equations

for the cylinder. However, the compressed region is very narrow and the pre-
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stress varies a great deal within a half wavelength of the buckle pattern

for 'ie acisyn•,.etrically loaded cylinder. The assumption of axis.mmetry of

prestress would therefore lead to a somewhat conservative estimate of the

buckling load.

"The circumferential nonuniformity of axial prestress can be accounted for

through the technique described in connection with Fig. 148: the cylinder

is treated as a portion of a very slender torus. Figure 154(a) snows the

geometry and temperature distribution. A cylinder with an axially uniform

prestress is transformed into a torus with a circumferentially uniform

"prestress. ihe buckling load is minimized with respect to the toroidal cir-

c•vferential wave number n, which is inversely proportional to the wavelength

of the buc.kle pattern along the axis of the cyli-ler. Figure 154(a) shows

the buckling mode shape corresponding to the mir. num predicted critical

o 0
Lt -Wperature rise, AT = 194°F. In the analysis the region 0 < ý < 180cr-- -

is divided into three segments, with 81 nodal points in the range 0 < ý < 120,

56 nodal points in the range 12 < ý < 450, and 35 nodal points in the range

450 < < 180 . The toroidal circumferential wave number n associated with

AT = 194 0 F is 160,000, which corresponds to an axial half-wavelength of• "• :.cr

"0.34 in., a result in agreement with Hill's analysis [ 105]. Hill tested

two steel cylinders with two diaphragms in both ends of each. One buckled

at AT 143°F and the other at 169°F.

Parameter Study - Cylinders Heated on Axial Strips: Ross, Mayers, and

Jaworski [ IC6] tested several steel cylinders heated on axial strips of

. ..- various widths. The cylinder geometry and approximate temperature distribution

are snown in 2ig. 154 (b). Buckling temperatures were ralculated with BOSO..

for strip.s of various widths. The analyses were made as just described, by

"152
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treatment of the cylinders as toroidal shells heated on circumferential

strips. The point k = 0 corresponds to the classical solution-AT = 0.6t/(ra)
cr

= 188 F. The analytical results indicate that buckling temperatures are not

very sensitive to width of t~.e heated portion, even if very narrow recLons

are heated.

Buckling of Conical Shells Heated on Axial Strips: Smith [ 210] tested a

series of ccnical shells heated on axial strips of various widths such that

k in Fig. 154(b) lay in the range 5 < k < 35.

Because his colleagues at Stanford had encountered difficulties with support

systems of unknown stiffness [ 104 - 106]. Smith took particular care to

provide maximum rigidity of his test rig, a schematic of which is shown in

Fig. 155 (a). The support system consisted of two thick steel end plates

connected by a thick central steel tube. This assembly was made more rigid

by the introduction of 8 half-inch thick steel webs welded at equal circum-

ferential intervals to the larger diameter plate and central tube. Further

details on the test method and soecimens are given in Ref. [ 200].

Figure 155(b) shows the temperature distribution at buckling in a typical

case. In the BOSOR analysis the conical shell was divided into three seg-

ments, as shown in Fig. 155(a). Nodal points were concentrated near the

ends, 29 points being taken in the segment labeled (2' in Fig. 155(a),

39 in 3 and 31 in ,4.

In the stability analysis of the cone, the "worst" meridional prebuckling

membrane stress distribution is identified (0 = 0) and assumed to be

axKsymmetric, Figure 155(c) shows the prebuckling membrane stress state

at 0 = 0, the circumferential variation of prebuckling quantities, and

"153
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buckling modal displacements w for the three lowest eigenvalues and eigen-

vectors corresponding to n o= 20 circur.,-Iential waves. The difference

between the lowest eigenvalue X and unity represents the discrepancy

between test and theory, since the prebuckling stress distribution corre-

sponds to that at the experimental AT . Critical temperature factorscr

do not vary much with circumferential wave number n. The values of

listed in Fig. 155(c) would be about 5% higher if the test rig were con-

. sidered to be flexible in the stability analysis.

The effect of circumferential nonuniformity of axial compression is very

small in these cases, since k (Fig. 154(b)) is 12.8. Inclusion of this

effect would lead to an additional 5% increase in the predicted value of •.

"Conclusions: The BOSOR computer program was used to calculate thermal stress

and buckling of nonuniformly heated monocoque cones and ring-stiffened cylin-

ders. Several comparisons between test and theory have been given which

demonstrate the applicability of the code to bifu3 cation buckling of a

rather wide variety of nonsymmetrically loadee shells. Linear theory is used

to calculate thermal stress and buckling under heati.ng that varies in both

the axial and the circumferential directions. Perfect cylinders or cones

heated on narrow axial strips buckle theoretically at approximately the same

temperature ac do unifor- heated shells, even if the half-wavelcagth of the

buckle pattern is approximately :he same as the circumferential extent of the

heated region.

The maximum prebuckling stress in an imperfect cylinder or cone heated on a

narrow axial strip is likely to exceed that of the uniformly heated shell

simply because the worst imperfections are not likely to occur in the

heated region. The effect of circumferential nonuniforiliLy uL IIi
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'4 can often be accounted for by treatment of the cylinder or cone as a very

"* slender torus in which circumferential variations are transformed into

axial variat.cn.z, aw'uissible within the shell-of-revolition stability analysis.

It is of interest to compare "knockdown factors"4 = AT (test)/AT (theory)
cr cr

obtained from the above analyses of the Anderson and Card [ 204] tests

( 1 = 1/A = 0.71), t,.e Hill [ 105] tests (ýi = 1430/1940 = 0.74, 42=

169°/194 = 0.87), and the Smith [ 210] tests [(1/1.52)< •2 < (1/1.11) or

0.66 < 4 < 0.89]. These values of 4 shouLd be compared with te values deter-

mined empirically for uniformly axially compressed cylinders with appropriate

radius-to-thickness ratios. Table 16 summarizes the results. The "typical

knockdown factors for uniform axial compression" are taken from Figs. 1 and

2 of Ref. [ 34]. Notice that the thinner the heated strip, the higher the

knockdc¢n factor above the corresponding range for uniform compression.

Buckling of Nuclear Reactor Containment Vessel due to Ground Motion

During an Earthquake

A rough idea of the buckling margin may be obtained from a quasi-static

analysis in which the loading on the shell consists of body forces due

to the inertia of the shell as it is accelerated as a rigid body during

an earthquake. Figures 156(a) - (c) show the geometry and inertial reactions due to

vertical and horizontal components of ground acceleration gv and gh' re-

spectively. The quantities pv and ph are vertical and horizontal compon-

ents of "pressure" proportional to the (mass/area), Pt,of the shell reference

surface and to the acceleration components gv and gh; and V and H are "line

loads" proportional to the discrete ring (mass/length), pA, and the accelera-

tion components. Under this system of inertial reactions the containment
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"vessel deforms as shown in Fig. 157. The membrane components of stress

are plotted in Fig. 158. Buckling is possible due to shear N12, which is

"maximum at 0 = ±90 or due to axial compression, which is maximum along the

meridian at 0 = 0. The critical buckling load factor and mode are shown

in Fig. 159.

Dynamic effects may be accounted for approximately by performance of a linear

transient analysis of the containment vessel followed by a series of static

bifurcation buckling analyses in which the prebuckling states are "snap shots"

of the shell at instants in time chosen by the analyst because they corre-

spond to peak compressive membrane stress fields. This method is conservative

if the bifurcation buckling load factors are modified by appropriate knock-

down factors to account for initial geometric imperfections.
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Section 6

BUCKLING OF RING-STIFFENED SHELLS

OF REVOLUTION

Introduction

In previous sections many examples have been given of buckling of shells of

revolution, especially cylinders, reinforced by equally spaced rings or

* by rings at the edges. Figure 22, which reveals the sensitivity of

critical axial load to initial imperfections in cylindrical shells of various

wall constructions, seems to indicate that ring-stiffened cylinders are less

sensitive than the other types for which test results are shown. In Figs.

35 and 36 buckling characteristics are illustrated for a ring-stiffened

titanium cylindrical shell which collapses at stresses exceeding the pro-

portional limit of the material. With creep neglected in the analysis the

shell is predicted to buckle nonaxisymmetrically in a bifurcation mode with

12 .ircumferential waves. With creep included the predicted mode of failure

is axisymmetric collapse.

Figures 64 - 68 reveal the complex behavior of buckling of externally

"pressurized shallow and deep spherical caps with a ring reinforcement at the

boundary. Table 3 shows that dependingo1 : the depth of the cap and the size

of the edge ring, buckling may be of the snap-through axisymmetric type

(n = 0 circumferential waves), may be inextensional nonsymmetric
cr

(n = 2 circ. waves), may be an edge phenomenon (n is rather large), or may•..cr cr

resemble classical buckling of a complete spherical shell (pcr is indepeodent

of n). Figure 64 demonstrates the sensitivity of buckling pressure of

a spherical cap to axisynmetric eccentricity of the edge ring. It is ex-

0-. plained that this sensitivity is caused by the strong influence of ring

eccentricity on the axisymmetric prebuckling hoop compression near the edge

eof the cap.
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Figures 81, 82, 122, and 123 illustrate ve-ious buckling phenomena

for a:.ially stiffened (corrugated) cylindrical shells wit1" equally spaced

internal rings. In Figs. 81 and 82 the emphasis is on a local load path

eccentricity which causes local buckling and the effect of the rings is of

secondary importance. In Figs. 122 and 123 nonaxisymmetric buckling is

- shown to be local between rings, that is the rings are large enough to

_ - prevent buckling displacement of the shell at the circumferential lines of

attachment to the rings, with local maxima of the normal buckling modal

displacement field occurring midway between adjacent rings. The fact that the

axial bending stiffness is very large compared to the circumferential bending

"- stiffeners in these corrugated configurations causes the influence of the

boundary conditions on the buckling load to decay surprisingly slowly with

*, increase in the length of the cylinder and increase in the number of

equally spaced rings. Figure 149 displays the buckling mode for a corru-

gated, ring-stiffened rocket payload shroud under nonaxisymmetric aerodynamic

- pressure.

"Other examples already shown of buckling of rinq-stiffened shells of revolu-

tion include theoretical and experimental results of Tennyson [ 170] for

"- perfect and axisymmetrically imperfect integrally ring-stiffened cylindrical

"shells under combined axial compression and external pressure (Fig. 142),

buckling under combined bending and nonaxisymmetric heating of a ring-

stiffened cylinder tested by Anderson and Card [ 204] (Figs. _50 - 152),

and buckling of a typical ring-stiffened steel containment ves,;el due to

- vertical and horizontal acceleration of its base during an earthquake (Fig. 159)

F.1
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Summary

The purpose of this section is to reveal additional physical phenomena of

buckling of ring-stiffened shells in order to acquaint the analyst with

various effects and failure modes, thereby providing guidance for the con-

struction of appropriate experimental and analytical models.

"The section opens with comparisons of test and theory for elastic ring-

¾ stiffened cylindrical shells under external hydrostatic pressure. Emphasis

is given to the effect of boundary conditions on bifurcation buckling pres-

sures. Local and general instability are demonstrated. Results from a rather

"-." extensive study of elastic-plastic buckling of hydrostaticalll compressed

internally ring-stiffened cylindrical shells are presented next. The com-

- parisons between test and theor-y include an investigation of the effect of

"* - finite ring thickness on the shell wall axial bending rigidity and hence on

the Duckling pressures of some of the specimens.

"Following is a discussion of the influence on stability of residual stresses

and deformations due to welding and cold bending. After a brief review of the

literature, examples are provided of the effect on buckling pressure of the

welding of rings to an ellipsoidal shell. Residual deformation patterns are

displayed for two cylindrical shells: one with rings welded to the inside

"surface and the other with rings welded to the outside surface. comparisons

between buckling pressures from test and theory are then presented for two

ring-stiffened cylinders of identical dimensions, one of which was machined

from a single billet and the other of which was fabricated by first cold

bending a flat sheet about a cylindrical die and then welding rings to it.
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The closes with several examples in which instability failure of

a ring-stiffened shell occurs in modes that involve local deformations of

the ring cross sections. These modes include circumferential crippling of

the ring, axisymmetric sidesway of the rinq, local buckling of the shell be-

tween adjacent rings in which the ring cross sections not only rotate but

also deform, and general instability of shell and rings together in a mode in

which the ring cross sections deform.

Elastic Buckling of Ring-Stiffened Cylinders under External Hydrostatic

Pressure

Table 17 gives a comparison between test and theory for the buckling

* ring-stiffened aluminum cylinders under hydrostatic pressure. Shell and

ring geometries are shown in Figs. 160(a) and 160 (b). Cylinders of this

geometry with various sizes of T rings (called "Frames" in Fig. 160) were

tested by Blumenberg at the Naval Ship Research and Development Center in

1965 [ 211]. The shells were analyzed with BOSOR [ 14]. The heavy frames

were treated as discrete elastic structures but the small rings were

"smeared out" according to the equations of Baruch and Singer [ 160].

Eccentricity effects are retained for both small and large rings. The

cylinders are "cut" at their planes of symmetry and buckling loads are

O calculated for both modal symmetry and antisymmetry at these planes. Fig.

161 shows one of the cylinders, prebuckling normal displacement w and
0

meridional moment MI0 , and buckling modal displacement components u, v, w

corresponding to general instability with n 2 circumferential waves.
cr

The nodal points are concentrated around the attachment points of the large

frames in the BOSOR model.
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Two theoretical values are given in Table 17 for each cylinder. These

' values correspond to clamped edges and to free edges with large end rings

. such as shown in rig. 160(a). Buckling with two or three circumferential

waves always corresponds to general instability (buckling of shell and

heavy frames together) as shown in Fig. 161, and buckling with 4 or 5 waves

always corresponds to local instability (buckling between heavy rings).

Mode shapes corresponding to gereral (n 2 circumferential waves) and local

(n = 4) instability are plotted in Fig. .162. "General instability"

denotes buckling in a mode in which both rings and shell deflect. The term

"local instability" denotes buckling in a mode in which the rings are at

nodes, as shown in Fig. 162 for n 4. If one plotted a curve of critical

load vs. circumferential wave number n for a single specimen there might be

"several minima: The general instability load may correspond to a minimum

Pcr (n) at a low value of n, and minima at higher values of n may occur

corresponding to buckling of each bay between adjacent rings. An example of

nonsymmetric buckling of an optimally designed conical shell in which there

are multiple minima in the curve p (n) v. n is given in Fig. 33 of Ref. [430].In

calculating critical buckling loads of shells of revolution, especially those

which have been optimally designed with respect to local and general instability,

users of computer programs such as those described in Refs. [ 11 - 14]

and [ 47] should be certain that they have covered all ranges of circumfer-

ential wave number n in which minima of p (n) v. n may lie.

In many cases the theoretical critical pressures are rather strongly depend-

ent on the boundary conditions. This is especially true for the specimens ir

which the mode of failure is general instability. In Blumenberg's tests

211] the cylinders were supported at the edges by the heavy rings shown
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"in Fig. 160(a). Additional support was provided by end plugs, which were

furnished with O-ring. 2.r sealing. As is the case in most experiments of

this type, it is difficult to determine just how much additional support

was provided by the end plugs. Therefore, two sets of calculations were

made, one for clamped edges and one for free edges with large edge rings. Itij

. seen from Table 17 that the assumption of no additional support by the

end plugs is too conservative in Cases 1-1 through 7-7 and in all of the cases

"in Group 2.

It is likely that in the tests the end plugs provided some restraint for all

of the displacement components and that this restraint is dependent on the

circumferential wave number of the buckling mode. Table 18 supports this

hypothesis. Notice that in Group 2 the difference between the loads for shells

"with clamped and free edges with large end rings is small for n =3 but that-

restraint in the axial direction alone has a large effect on the critical

pressures for n = 2. It is clear from the experimental results for Group 2

that enough axial restraint was present to cause these cylinders to buckle

t "into more than two circumferential waves. This discussion is included to

:ýmphasize the need to control carefully the boundary conditions in experi-

- A'. ments and to specify them correctly in analyses.

Elastic-Plastic Buckling of Ring-Stiffened Cylinders under External

Hydrostatic Pressure

In 1965 Boichot and Reynolds [ 212] tested 69 integrally ring-stiffened

aluminum 7075 T6 cylinders under external hydrostatic pressure. The cylin-

ders failed in the plastic range. In 1976 the BOSOR5 computer program

L [ 47] was used to obtain theoretical buckling pressures [ 171]. Photo-

graphs of some of the failed specimens are shown in Fig. 163. A schematic
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of the geometry of all the Boichot and Reynolds specimens is shown in

.9. Fig. 164, with the actual dimensions given in Table I of Ref. [ 171]. The

- stress-strain data used in the analysis are listed in Table 2 of Ref [4.171].

Previous analyses applicable to some or all of these specimens have been

performed by Lunchick [ 213], Krenzke and Kiernan [ 214], Reynolds [ 215],

Lee [ 216], and Gerard [ 217]. All of the analyses agree reasonably well

with the test results, owing largely to the fact that the tangent modulus

of the material decreases by more than an order of magnitude within a 20%

stress range of the 0.2% yield stress.

A'

Comparison of test and theory for bifurcation buckling and axisymmetric

* collapse of the 69 specimens is given in Fig. 165. Of the 69 test speci-

mens, 24 (designated "F", in Fig. 164, had fillets near the boundaries

and where the rings join the shell wall. From the photographs in Ref. [ 212],

from which Fig. 163 is reproduced, it appears that practically all of the

specimens without fillets fractured during failure. However, it is not

"possible to determine from the test data alone whether fracture caused the

failure or whether fracture occurred later as the shell was deforming in

its buckling mode. On the other hand, there is almost no evidence of fracture

occurring in the case of the 24 specimens with fillets. Therefore, it is

reasonable to predict that better agreement between test and theory will be

obtained for the specimens with fillets than for those without. Further-

more, analytical predictions that are too high for the specimens without fillets

would lead one to favor the hypothesis that failure was caused by fracture

rather than buckling in these tests, since the analytical model (BOSOR5) is

incapable of predicting fracture. This would be particularly true if the too

high predictions correspond to the thicker specimens for which imperfections

are less significant.
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There zre three different nominal radius/thickness ratios involved in the

test series: R/t % 12, 20, and 50. Buckling pressures for the R/t % 50

specimens are somewhat sensitive to imperfections because buckling, especially

of the models in this class with small ring stiffeners, occurs at average stresqes

that are barely in the plastic range. Indeed, the test results for the

thinnest specimens exhibit the most scatter, as indicated in Fig. 165.

"The gý.neraily upward sloping trend with increasing b/yRt in Fig. 165 re-

sults primarily from the fact that the analytical model becomes increasingly

conservative with increasing b/JTRt): The discrete rings are assumed to be

attached to the shell at a single point with the shell free to bend in the

axial direction in the immediate neighborhood of this point. The neglected

effect on the shell meridional bending stiffness of the finite thicknesses

of the rings leads sometimes to predictions of axisymmetric collapse with

relatively short axial wavelengths when the test specimens actually failed

nonsymmetrically. The snort-wavelength axisymmetric mode of failure is

. -hindered by the increased local meridional bending stiffness afforded by the

"finite axial intersection lengths of shell and rings more than is the rela-

tively long wavelength general instability mode of failure.

With use of BOSOR5 it is possible to investigate analytically the effect on

predicted critical pressures of inclading some additional axial bending

stiffness due to the finite axial length of the shell-ring intersection areas.

"This increase in axial bending rigidity is modeled as shown in Fig. 166.

*i Additional nodal points are provided in the neighborhoods of the discrete

"rings with meridional rotation ý constrained to be equal at nodal points

corresponding to the bottom and top surfaces of each discrete ring. The

solid line, labeled Model 1, corresponds to the originaJ analytical models
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of the test series 15-5XF in which the discrete ring is considered to be

attached at one point and the shell is free to bend under the ring. That

is, the prebuckling meridional rotation ý3 and bifurcation buckling modal

rotation b are free to change along the shell wall within tha shell-ring

"intersection area. With the extra constraint conditions (Model 2) the analytical

predictions are closer to the test results. The cr-*ical failure mode for the

specimen with the thickest rings, Specimen 15-58F for whi-U b/vlRt) % 0.3, is

predicteu to be axisymmetric inter-ring collapse with use of Model 1 and non-

axisymmetric general instability with use of Model 2. In the cases for which

general nonaxisymmetric instability is predicted with use of Model 1, introduc-

tion of extra constraint conditions as depicted in Fig. 4.166 does not change

the prediction very much. Analytical results for all of the cases investigated

with use of Model 2 are given in Table 7 of [ 171]. Unfortunately, the bud-

get for computer time did not permit analysis of the entire series of tests

"with use of Model 2.

Figure 167 shows the predicted axisymmetric failure modes for Speciren 25-88

(b//(Rt) = 0.431) with use of Model 1 and Model 2 analysis. It is clear from

these plots why introduction of the extra constraint conditions raises the

predicted axisymmetric collapse load.

Effect of Residual Stresses and Deformations

on Plastic Buckling of Ring-Stiffened Shells of Revolution

Review of Previous Work

In 1958 Ketter [ 218] identified four sources of residual stresses and

deformations of fabricated metal structures: differential cooling during
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and after rolling sheet metal, cold bending, various erection procedures,

and welding. He considered the effect of differential cooling in the

"fabrication process on buckling leads of axially compressed I-beams.

Cold Bendiq- Several authors have investigated residual stresses due to cold

bending. Almen and Black [219] give the residual stress pattern through

the thickness of a bar which has been bent about a circular die. Queener and

De Angelis [ 220] derive approximate formulas for residual stresses and the

"ratio of die radius R to final radius after springback Rf for materials with
0f

n
stress strain curves of the form a = Ke . They perforred tests for various

materials and a wide range of Ro/R , obtaining good agreement between test

and theory. Their treatment is based on deformation theory. Lunchick [ 221]

0determined the effect of cold bending on buckling loads of cylindrical pres-

sire vessels. He calculated effective stress-strain curves for the pre-

stressed material by averaging effective stresses and strains at twelve

stations through the thickness of the shell wall. Such curves depend on the

service loads. Lunchick's model is based on elastic-perfectly plastic material

- and deformation tbeory. It is determined in [ 221] that bending residual

stresses have the greatest weakening effect for cylindrical shells in which

the effective stress in the wall is near the material proportional limit at

the buckling pressure calculated with neglect of these residual stresses. For

• such structures, the reduction in buckling nressure due to cold nding can

N• be as much as 30%.

Shama [ 222] derived a simple method for calculating the magnitude and dis-

tribution of cold bending residual stresses for any beam cross section. ' .e

effects of the shape of the stress-strain curve, section characteristics, and

:he degree of bend are investigated. Taccy [ 223] has written a computer
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program for the calculaion of the residual stress distribution and the ef-

fective stress-strain curve of cold bent beams for a wide range of practical

cross section geometries. The Bauschinger effect and possible inelastic

behavior on springback are accounted for. The hardening rule used in

Tacey's program is a combination of isotropic and kinematic rules.

Welding: During the 1970's much work has been done on the numerical model-

ing of multipass welding. The ASME volume, Numerical M-odeling of Manufactur-

ing Processes [ 224], contains several papers on this subject [ 225 - 230].

Masubuchi [ 231] wrote a survey of the field in 1975. Three frequently

referenced papers are by Hibbitt and Marcal [ 232], Nickel and Hibbitt [ 233],

and Friedman[ 234]. The results presented in these papers are generally ob-

tained from sophisticated computer programs for multidimensional eialysis.

Although the heat conduction and the thermal stress problems are uncoupled,

the models include nonlinear boundary conditions for solid and liquid regions,

temperature-dependent material effects, latent heat effects, and convective

and radiative heat transfer boundary conditions.

It is impractical to incorporace such elaborate models of the welding

process into ananalysis of buckling of a ring-stiffened shell with many

welds. A simple, computationally efficient model is introduced in [ 47], in

which buckling pressures are calculated for a welded ring-stiffen-1 ellip-

soidal shell. The shell and rings are assumed to be machined and stress

relieved separately and then weldei together. The effects of weld shrinkage

are simulated in [ 47] by means of the assumption that a certain amount of

material in the local neighborhoods of each weld is cooled below ambient

teraperat,. e to a e •cerence approximately equal to the annealing temperature.

The residual stress distribution thus generated is characterized by local
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tensile circumferential yielding near the welds and elastic circumferential

compression over the rest of the cross sections of the shell wall and ring

stiffeners. The structure prestressed in this way remains axisymmetric, of

course, but the radial shrinkage varies in the meridional direction, intro-

ducing an axisymmetric imperfection with a characteristic wavelength equal

to the ring spacing. The weld effect thus modeled reduces the predicted buck-

ling pressure by about 10%. Similar calculations are described in 2 2351

for axisyrn etric creep buckling of girth-welded titanium spherical vessels

subjected to external pressure.

Bending and Welding: Few papers exist in which residual stresses are cal-

culated for more than one fabrication process. Chen and Ross [ 236] calcu-

late residual stresses from cold bending a flat sheet into a cylindrical

shape and then welding the longitudinal seam. They suggest that these

residual stresses will cause early column buckling of long cylinders under

axial compression. In his computer program, Tacey [ 223] permits introduc-

tion of arbitrary initial stresses and then calculates residual stresses for

a series of up to ten sequential bending processes. Faulkner [ 237] gives a

survey of work done on calculation of residual stresses due to welding ring

stiffeners to cylindrical shells and cold bending sheets into cylindrical

.- shells and beams into rings. He states that when ring stiffeners are welded

to a cylindrical shell of thickness t there is tensile yielding over a

length of shell equal to 2pt and over a length of the ring web equal to nt.

These tensile regions are balanced by compressive residual stresses distribu-

ted over the rerrinder of the shell and ring cross sections. Typical values

of fl obtained from measurements are in the range 1.5 < n < 4.5. The

"measured radial shrinkage at the welds is approximately 10% of the shell thick-

ness t.
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"Figures 109 - 115, Table 7, and the accompanying discussion describe

an unsuccessful attempt to explain the unexpected failure of a large steel

"water tank by accounting for residual stresses and deformations due to cold

bending flat sheets into a conical form and then welding them circumferen-

tially.

Effect of Welding on the Plastic Buckling Pressure of an Ellipsoidal Ring-

Stiffened Shell

The geometry of an ellipsoidal shell with internal ring stiffeners is shown
-. .

in Fig. 168. The purpose of the analysis of this structure is to determine

the effect on predicted buckling pressure of axisymmetric distortions and

* residual stresses due to welding the rings to the shell.

Figure 169 shows the BOSOR5 model which consists of 313 degrees of freedom

in the axisymmetric prebuckling analysis and 466 degrees of freedom in the

--/• nonaxisymmetric stability analysis. Symmetry conditions are imposed at the

equator in both the prebuckling and bifur-cation buckling analyses. (It was

determined in preliminary runs on the computer that the lowest bifurcation

* ,- buckling pressure corresponds to a mode symmetric rather than antisymmetric

about the symmetry plane. The locations of the discrete ring attachment points

and centroids are indicated in Fig. 169 (b).

The effect of the welds shown in Fig. 170 (a) is introduced into the analy-

"tical model by means of the temperature distribution shown in Fig. 170 (b):

A certain amount of the material of ring web and shell wall in the neighbor-

hood of the welds is considered to be cooled down below room temperature.
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The value 1000 F corresponds approximately to the anneal temperature of the

steel from which the structure is presumed to be fabricated. The anneal

temperature is used as a reference value because residual stresses are re-

lieved for higher temperat-ires than this. The zero-stress temperature dis-

tribution corresponds to the weld reoion being hot (above 10000F) and tne

rest of the material being at room temperature. As the weld material cools

down from 10000F to room temperature, stresses build up in the shell and

ring, tensile in the region that was originally heated above 1000°F and

compressive elsewhere. Thus, the non-zero stress state corresponds to a

uniform ambient temperature distribution. in BOSOR, it is not possible ti

generate a non-zero initial thermal stress state with a uniform temperature

distribution. Therefore, one must simulate the growth of residual stresses

and deformations by treating the weld region as if it were cooled down

below ambient temperatdre.

Figure 171 shows the prebuckling axisymmetrically deformed shape with

increasing external pressure and a comparison with and without welding

., effects. The relatively advanced scalloping of the meridian corresponding

to p 4100 psi with the weld effect arises because of increased local plastic

"flow near the 2ing attachment points. The ring at the plane of symmetry moves

inwerd rapidly with pressure increasing above 3500 psi because the flange

yields and flows plastically, having zero tangent modulus for P > 350C psi.

(There is moi.- welding required in the neighborhood of this ring than the others

because the ring must first be welded to one of the halves of the shell and

O then the two halves of the shell rrast be welded together. Hence, in this area

more of the material is cooled down by, an amount approximately equal to the

V' anneal temperature.)
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Figure 172 shows predicted incipient buckling modes with and without the

- -.- weld thermal effect. The lowest predicted critical pressure corresponds

in both cases to nonaxisymmetric buckling with 5 circum~ferential waves. The

"buckle modes are quite different in the two cases because of the increased

amount of prebuckling plastic flow in the ring at the plane of symmetry

predicted with the model which includes the weld effect.

e- Residual Deformations from Welding Internal v. External Rings

In 1957 Krenzke [ 238] investigated experimentally the effect of welding

residual stresses and deformations on plastic buckling of ring-stiffened

cylinders under external hydrostatic pressure. Two of his specimens, d&rig-

nated "Ml" and "M2" were nominally identical except that the rings of

Specimen Ml were internal and those of Specimen M2 were external. Krenzke

measured average -welding distortions for Specimen Ml approximately equal to

those exhibited in Fig. 173 (b), which are predicted by BOSOR5 [ 47] to

"result from the imposed nonuniform temperature distribution shown in

DETAIL AA. &n analogous temperature distribution corresponding to exter-

nally welded rings yields a predicted residual deformation shown in Fig.

173 (c). These displacements have the distribution measured by Krer. -.

for Specimen M2 but the amplitude of the predicted waves is about twice that

* measured. It seems that, in this case at least, about half as much "cool-

"down" is required to simulate the welding process with external rings as is

required for the simulation of welding internal rings.

In the tests the externally st. ffened specimen M2 collapsed at a pressure

about 5% higher when corrected for different ma,:erial yield strengths than

that for the internally stiffened specimen. The same difference is predicted

by BOSOR5. The -xollapse -node is characterized by formation of an axisymmetric
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inward dimple, as shown in Fig. 36(e). The "hungry horse" residual. weld-

ing deformation pattern displayed in Fig. 173 (b) represents an initial

imperfection that is more harmful than the "caterpillar" mode exhibited in

Fig. 173(c) because the former resembles the collapse mode illustrated in

Fig. 36 (e) whereas the latter has a shape opposite to that of the collapse

mode.

Effect of Col d Bending and Welding on Buckling of Ring-Stiffened Cylinders

The BOSOR5 computer program can be used for calculation of bifurcation buck-

ling of cold bent and welded ring-stiffened cylinders under external pressure.

"Residual stresses and deformations from cold bending and welding can be in-

cl-ided in the model for buckling under sei-ice loads by introduction of

these manufacturing processes as functions of a time-like parameter,

"time", --hich ensures that the mwterial in the analytical model experiences

the proper sequence of loading prior to and during application of the service

loads. The cold bending process is first simulated by a thermal loading

-*- ..ycle in which the temperature varies linearly through the shell well thick-

ness, initially increasing in "time" to simulate cold bending around a die

of radius R and then decreasing in "time" to simulate springback to
0

a final somewhat larger design radius R. The welling process is subsequently

simulated by the assumption that the material in the immediate neighborhoods of

the welds is cooled below the ambient temperature by an amount that leads to

* weld shrinkage amplitudes typical of those observed in tests. Buckling loads

are calculated for a configutation including and neglecting the col bending

and welding processes. These predictions are compared to values obtained from

tests by Kirstein and Slankard 1 239] and Slan:ard [ 240] on two nominally
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identical specimens, shown in Figs. 174 (a-c). The specimen designated

"BR-4 was fabricated by cold bending the shell and then welding machined

ring stiffeners to it, and the specimen designated BR-4A was carefully

mac ineed.

Cold Bending of a Flat Sheet into a Cylindrical Shell of Infinite

"Length: During the cold bending process the axial and circumferential strain

"components in a bent sheet of thickness h are approximately

V1

C (z/R) f (t/t ) -h/2 < z <+ h/2 (39)

-2 01 0

in which z is the coordinate normal to the middle surface and R -h/2 is
0

the radius of the die about which the sheet must be rolled so that when it

springs back the final radius of the bent sheet is the design radius of the

cylindrical shell R . The quantity t is a parameter (such as time)

which determines how much of the bending process has been completed; t
0

is the value of t when the initially flat sheet has been bent into a

cylinder of radius R (before relaxation of the applied circumferential
0

moment), and

*• f(t/t ) = t/t for 0 < t/t < 1.0

0 0 0-

f(t/t ) = 2 - t/t for 1.0 < t/t < (t /t ) ( 40)
0ro o o- r

o r o r o o

"E-"uation ( 40a) gives the function of normalized "time" f(t/t ) during which

"the radius into which the initially flat sheet is being bent decreases until

it reaches the minimum value R . Equation ( 40b) gives the fun, tion f(t/t )

during the interval when the moment causing the bending is relaxed, so that
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at t = t there are no resultant forces or moments in the circumferential
r

direction. Equation ( 40c) indicates that the state of the bent sheet does

- not change for t > t S~r

The following approximations form the basis for Equations ( 39):

1. Strains are small compared to unity.

2. The sheet is long enough so that end effects can be ignored.
N

3. The ratio t/R is negligible compared to unity.

S4. Effects of strains normal to the sheet surface are negligible.

% 5. There is no average tension of compression during bending;

the neutral axis remains at the middle surface.

During the bending and relaxation process, each material point in

the sheet passes through three distinct regimes: an initial elastic load-

"ing regime, an intermediate elastic-plastic regime, and a final elastic

"unloading regime.

Initial Elastic Loading: In the initial elastic regime, the axial

and circumferential stresses are given, respectively, by

a E ( + = E (Z/R)(t/t) (41)
CT 1 2 C1 + E2) zR (/(i1-V) (1-v2)

"a "= E ( v /
2 (1V2 2 2 + 1 1

The von Mises yield criterion is

""- (2 2 1)/2 ( 42)+ a - =)ay
*a 1 2 1 2 y

From Eqs ( 41) and ( 42), the normalized time to yield can be computed as

Ste/t = [a (Ro/IZl)/E] [(l-v2  2-) 1 ( 43)

174



"Elastic-Plastic Loading: In the elastic-plastic regime,

(t i/t ) < t/t < 1.0, the calculation of the stress and plastic strain
yield . 0

components mu-t be performed incrementally because the plastic flow

"direction", according to the normality rule, depends on the stress state. As

"set forth in [ 241], the total meridional and circumferential strain

increments, AL1 and AE2 , consist of the sums of elastic and plastic

strain increments:

LEI = '(AL, - VAC 2 )IE + AE: (OC/aI~) ( 44)

AC2 = (Ac 2 - ,Ac( 1 )/E + Ar_ O(/3c2 )

in which Ac is the effective plastic strain increment. It is known frow

Eqs ( 39) that

LEI Ac 1 = 0; A 2  (z/R) (At/t) ( 45)
0 o

and from Eq ( 42) that

(a + A) = = [ ( + ') 2 + (92 + AC2) 2 - (CI + AG0)(G 2 + AU2 )]I/2

(46)

and

9a
= (2o -G 2 )/(2), c - (2c 2 - aI)/(2a) 47)

If we assume (in this section only!) that the material is elastic-perfectly

plastic (a = constant) e'd that the stress increments are small compared to

the stresses, AL is zero and Eq.( 46) leads to

L Ac1 = -[(2c 2 -c1)/(2 1 - c2)] Ac2  ( 48)

The three equations ( 44a), ( 44b), and ( 48) can now be solved for the

three unknowms -ac, I , arid AEP for each time increment ,t between

:•-w

- 1•75
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t=t a d t=t At the end of each time increment, the new stress
yield o

state is

(n •l) = (n) A(n+l) 2 (n) ( 49)oI = I + (n ;o2 =ol+)o

and the plastic strain components are

p(n+l) p(n) -p(n) (n)_ (n))E- •I = • + AEp (2aI -7 )(2ay

y
S50)

p(n+l) p(n) + p(n) (n) (n)E2 = 2 + AP (2oY2 -F 1 n)/(2a )
Y

The state of the material at various points in space, z ± mAz, m-l, 2,.,-M

and in time, tyield nAt, n=,2,...N, can thus be calculated recursively

for an arbitrary number of time increments N in the interval t yield

< t < t 0.

Relaxation: if the relaxation process in the third regime t <
0

t< t is assumed to be elastic, the stress components at the end of
r

the interval, t=t r' are:

(tr) (to) E01 alo + V_- - (Z/Ro) (1 t t/to 51)

(t) (o) E

G2 = U2 + E (z/Ro) (1 - trt)

(t) (t)
in which a r and 02 r denote, respectively, the axial and circum-

ferential stresses after the applied bending moment has been completely

relaxed. The normalized time to complete relaxation, tr/to, can be cal-

culated from the requirement that after relaxation the circumferential mo-

ment resultant is

(h/2
(t (tr)

M2 r 0 z dz 0 (52)
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With use of Eq ( 51b), Eq ( 52) yields

(t) 3
tr/t = 1 + IM2 0 12 (l-v 2 ) RI (E/ 53)

in which M2 (t) the bending moment just before relaxation begins,

is given by
WY2

•" (to ft)(M t _ 2 0t z d z ( 54)

•• J -h/2

l~i; (to

"The circumferential moment result M2 can be calculated by Simpson's

rule integration of the stress through the wall thickness.

Obtaining a Value of R The given quantity in this problem is the

final cylinder design radius R after elastic springback. It is neces-

sary to bend the initially flat sheet to a somewhlat smaller radius R

such that after relaxation it springs back to the design value R .

The change in curvature due to elastic springback is

(t) (to)
_1 1 M2 (Iv 2 ) M 12(1-v 2 )

1_1_=_2- 2 (55)
0R R E1 Eh53

(t )

In general, M2 0 depends in a complex way on the unknown R , through

Eq ( 54) and the recursive relations ( 49) and ( 50). One might solve

(t)
for R iteratively by trying a value, computing M2 0 from Eqs (4.49)

q0
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and ( 54), and using Eq ( 55) to derive an updated value. For per-

(t )
fectly plastic materials, the moment M is given approximately by

2

(t 0 2 2 1/2
( 22/[A(l-. + )1] ( 56)2y e e

in which v is an effective Poisson's ratio in the range v < v < 0.5.
e e

Equation ( 56)can be used to obtain a starting value for R in the

iterative process. Alternatively, one could use the tormula derived by

Queener and De Angelis[4.220]for strain hardening materials with stress-

strain curves given by a = Ken:I• (• 1-n

•-3K(I_,,2) 
2 )1-

R /R = 1 - ( 57)
0. o E(2+n) (3/4)(l+n)/2

in which

3+n

(2+n) (3/4) (1+n)/2 (i-)+,2)_(2+n)/2 (i_)+)2)3/2

Equation ( 57) reduces to Eq ( 55) with Eq ( 56) if the last term on the

right-hand side of Eq ( 5 7 )is neglected, K is set equal to a y,n=O,

and v = 0.5.e

Simulation of Coid Bending in BOSOR5: The cold bending process is

simulated in a BOSOA5 model by use of a thermal loading cycle. In the

BOSOR5 analysis the elastic stresses in the cylinurical shell -.re given

by

E
-- [(ei - a AT)+ v (E2  a2 AT)]

I-•2 59)

E2  E - cEl AT) + (C2 - a2 AT)]
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in which al and a2 are the meridional and circumferential coefficients of

thermal expansion. AT, a function of z, is the difference between the

applied temperatire and the zero-stress or ambient temperature. Since the

sheet in the BOSOR5 model is already in its bent form, the temperature

distribution T(z,t) should be such as to cause the total strains cl(z,t)

*" and 62 (z,t) to be zero. In addition, in the initial elastic regime, we

know that al and a2 are given by Eqs.( 41). These facts and Eqs ( 59)

"* lead to the equations

v (z/Ro) (t/t°) = - (a, + v a 2 )AT 60)

(z/R ) (t/t ) : - (v al + a 2 ) AT

for which the sclution is

a 2 AT = -(z/R )(t/t ); ( 61)

The minimum bend radius is calculated from Eq ( 55) or Eq ( 57).

Procedure for Using BOSOR5 to Calculate Buckling Loads Including

Residual Effects Due to Cold Bending and Welding: Pesidual stresses and

deformations due to cold bending are first calculated with BOSOR_5 in two

computer runs. The first run gives the peak bending stresses at t=t =1.0
(t) 0

0
and yields the circumferential bending moment M2 , which is needed in

order to d tLrmine the relaxation time, tr, from Eq ( 53). The second

run yields tie residual state after complete relaxation of the bending

moments. Subsequent computer runs include application of welding, as

described in the discussion associated with Figs. 168- 173, followed by

application of the service loads. The thermal loading and service loau[rig

are applied in the proper sequence by means of specification of them

as functions of pseudo-time such as shown in Figure 175, which applies to

buckling predictions of Slankard's test specimen[ 240]. (See rigs. 174 a,c.)
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Comparisons with Tests on Cold-Bent Sheet: Figure 176 shows residual

stresses thrOLgh the thickness of a specimen tested by Queener and DeAngelis

220].The BOSOR5 results arp practically indistinguishable fron the

theo-etical results of [ 2 2 0 1.Queener and De Angelis describe how they ob-

tained the test points. The parameters of the problem are given ir. the fig-

ure. The stress-strain curve used in the BOSOR5 analysis is linear up to

the proportional limit a p and follows the curve a = Kcn in a piecewise

linear fashion for a > a PC In the 30SOR5 simulation, the configuration
1/2

is a cylinder which is long compared tL (Rt) with symmetry conditions ap-

plied at both ends. The temperature vari.k linearly through the wall thick-

ness h as shown in Fig. 176, and varies Ath time as given by Eqs 40

t =1.0 and t -1.25.
0 r

Buckling of Cold Bent and Welded Ring-Stiffened Cylinder: Com-

parison of Test and Theory: Figure 174 shows

two ring-stiffened cylinders buckled by external hydrostatic pressure 1 239],

240]. Both test specimens are made of t s,.me material and have

the same dimensions. The one on the left, desigr!'-4 "BR-4" in [ 240],

was fabricated by cold forming the cylindrical shell from a flat sheet and

then welding on rings which had been machined. The o-e on the right,

designated "BR-4A" in [ 239], was machined from a single thick tube.

Dimensions of the specimens are given in Fig. 174(c). The material

Is called "Alan Wood Steel" in [ 239] and [ 240], witb a yield stress of

50,600 psi. An elastic perfectly plastic property wa. i.ssumed for the BOSOR5

models. The test specimens were sealed at the ends in such a way as to sug-

gest the use of simple support boundary conditions in thý aeaiLysAs.
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In the tests the cold formed, welded specimen BR-4 buckled at 390 psi

and the machined specimen BR-4A bu-ýkled at 540 psi. The BOSOR5 analysis of

BR-4 yields a predicted buckling pressure of 460 psi and the analysis of

BR-4A yields a predicted buckling pressure of 540 psi. Since the BOSOR5

models are identical except for the simulation of cold bending and welding,

it is the r~sidual stresses and deformations arising from these fabrication

processes that cause the decrease in predicted buckling pressure from 540

psi to 460 psi.

Two BOSOR5 models of the cold formed, welded specimen BR-4 were analyzed.

These are shown on the left-hand side of Figure 177 (Figures 177a and f). In

the first model, Fig. 177a, the cylindrical shell was treated as a single

segment and the welding process was igncrca. The cold bending process was

simulated with a temperature gradient with a maximum temperature rise

AT = 12430 corresponding to a coefficient of thermal expansion a = 6x0-6 /o.

Figures 177 b-d show the axisymmetrically deformed generator at certain stages

of the analysis. The predicted buckling mode depicted in Figure 4.177e corre-

sponds to twelve circumferential waves. The oredicted buckling pressure ignor-

ing welding is 460 psi, the same as that in which simulation of the welding

is included, as described next.

Figure 177f shows the BOSOR5 model for the case in which both cold bend-

ing and welding are simulated by thermal loading. This is a much more elaborate

model than that shown in Figure 177a: the cylinder generator is divided into

fifteen segments in order to be able to specify different spatial distributions

of temperature for the cold bending and the welding phases of the fabrication

process. The welding process is simulated in the short segments near the

ring stiffeners and the cold bending process is simulated in the rest of the

cylindrical shell. (This segmentation with different AT distributions in the

long and short segments leads to the slightly wavy result in Fig. 177g.)
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'6 Figure 178 shows the two spatial temperature distributions used in the

simulations. A reasonable maximum welding shrinkage of approximately 8% of

the shell thickness is produced by the assumption that the material near and

in part of each ring stiffener is cooled to 7000 below ambient temperature.

The extent of the weld affected zone shown in Figure 178 corresponds to

a value of Faulkner's rj between 2 and 3, well within the range observed in

tests [ 237).

"Figure 175 shows the' BOSOR5 time functions associated with the two fabrica-

tion processes and the pressure loading.- The predicted shapes of the axisymmet-

rically deformed cilinder generator at various times are shown in Figures

"177g through 177j, and the predicted buckling mode with welding simula-

tion included is -hown in Figure 177k. While inclusion of welding shrinkage

does not change the predicted buckling pressure or mode in this case, it

does considerably change the prebuckling displacement distribution, as seen

from a comparison of Figures 177d and 177j. The radial shrinkage due to

welding is maximum at the ring stiffeners (equal to about 8% of the shell
.- -

thickness) ana minimum midway between rings, a mode similar to that shown in

Fig. 17 3c. The welding process apparently has little influence on the

"buckling pressure because of two counteracting effects: the residual weld-

ing stresses weaken the shell but the "caterpillar" type residual deformations

* strengthen it.

Figure 179 shows the predicted stresses through the wall thickness midway

* between rings at various times of particular interest. The bands of plastic

flow indicated in Fig. 179(d) result from the residual compressive stresses

due to cold bending located in the corresponding regions of the wall thickness,

as seen in Figs. 179(b,c). More details are given ..i Ref. [ 142].
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Possible Causes of the Remaining Discrepancy between Test and Theory: The

BOSOR5 simulation of the fabrication process explains a little more than

half of the experimental difference between the buckling pressures of the

machined model BR-4A and the cold bent, welded model BR-4. The remaining

discrepancy is probably caused by some combination of the following effects

not included in the BOSOR5 model:

1. There exist nonaxisymmetric initial imperfections which are greater

for fabricated models than for machined models. These include nonuniformity

in shell thickness. Measurements of the steel plate from which Specimen BR-4

was fabricated indicate that the thickness varied by as much as 10% [ 240].

2. The stress-strain curve of the "Alan Wood Steel" from which Specimen

BR-4 was made is unknown. The material proportional limit may have been less

than the yield stress quoted in [ 240]. If so, inclusion of the Bauschinger

effect in the BOSOR5 model would have generated yielding in compression at

lower oressures than those calculated with the present model, which is based

on an isotropic hardening law. Presumably, the critical pressure would then

also have been lower.

3. The welding simulation is a heuristic model which is in qualitative

agreement with measurements on other specimens made of other material [ 47,

237, 238]. A rigorous treatment including welding sequence and nonaxi-

symmetric effects might lead to a lower critical pressure.

4. The sheet from which Specimen BR-4 was fabricated may have contained

initial residual stresses due to differential cooling during and efter it was

rolled into its flat form of thickness .132 in.
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Effect on Buckling of Deformations

of the Ring Cross Sections

General and Local Instability

Most of the examples in this section involve cylindrical shells subjected to

external hydrostatic pressure. Such structures are often designed through

use of an optimality criterion: Dimensions of the shell wall and ring spac-

ing are determined such that buckling in a general instability mode, such as

shown in Fig. 180(a), occurs at the same value of pcr as buckling of the

skin between adjacent rings, such as shown in Fig. 180(b). The heights and

thicknesses of the ring segments are established such that local crippling

of each of these parts as shown in Figs. 180(c,d), occurs at the same

critical compressive circumferential strair. as that in the shell wall corre-

sponding to general. and local instability (a,b). The design is arrived at by

calculation of buckling strains with the assumption that each part can be

analyzed separately and can buckle independently of the rest of the stru_•ture.

'" Simple support edge conditions are imposed at the boundaries of each part in

order to permit use of simple expressions for the assumed buckling mode, such

as sin(',x/L)sin nG.a

* Local rinc stiffener buckling modes are characterized by buckling of individual

stiffener segments with no translation of the junctures between these segments.

Simple suppoit conditions are imposed at segment junctures, as illustrated

in Figs. 80(c,u). Each of the internal segments, that is a segment with

both edges connected to another segment, may buckle with a different number

of circumferential waves n. Each end segment has one free edge and does not

deform but rotates about the juncture with the neighboring internal segment.

"The number of circumferential waves in the critical buckling pattern of each
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end segment is equal to the number of circuofcrantial waves in the critical

buckling pattern of its neighboring internal segment. Behavior of a typical

end segment is shown in Fig. 180(d).

Figures 180 (e-g) show another type of stiffener buckling, called "rolling".

Three kinds of stiffener rolling are depicted, one (e) in which the panel

skin participates and two (f,g) in whi-h it does not. In the first (e) the

stiffener cross section does not deform Dut simply rotates about its line of

attachment to the skin. in the other two rolling modes kf,g) the stiffener

web deforms and the portion of the ring cross section attached to this web

translates and rotates. Buckling of type (f) occu-_'s because of compression

perpendicular to the plane of the paper. The buckling mode usually has

several circumferential waves. Buckling of type (g) occurs in the cases

of internal rings on externally pressurized cylindrical shells or external

rings on internally pressurized cylindrical shells. It is due to compres-

sion in the web in the plane of the paper, a compression generated because

the portion of the ring attached to the end of the web resists radial displace-

ment. The resulting radial compression in the web can lead to axisynmetric

"wide-column" buckling of the web.

Modal Interaction

One might think at first that the design method just summarized should be

conservative if the effect of geometrical imperfections is ignored. It is

clear that local bucklinq of the skin between two adjacent rings cannot occur

as drawn in Fig. 180(b) without forcing the rings to rotate. Similarly,

local buckling of each ring cross section segment cannot occur as exhibited

in Figs. 180 (c,d) independently of the other segments, because these seg-
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4k^ are not hinged at their junctions. The model with many hinges between its

parts should vield lower bound estimates of buckling loads and therefore

thicker parts than required for the actual (perfect) structure, a designer

might well reason.

However, because of the interaction of local and general instability modes

and the interaction of various local instability .nodes, critical buckling

loads calculated for an assembled perfect structure are usually lower than

are those calculated separately for parts of this structure treated as if

they were hinged at their boundaries. Figure 181 illustrates the effect

of interaction between general and local buckling modes on predicted buckling

pressures of a cylindrical shell with external T-shaped rings. This shell was opti-

nized with respect to weight through use of two interactive computer programs

described in [ 242] and [ 243], which perform the optimization with use of

simple membrane theory prebuckling analysis and assumed one-term buckling mode

shapes such as expressed in Fig. 180. The results shown in Fig. 181 were

obtained with BOSOR4 [ 14], in which axially nonuniform preluckling behavior

is accounted for and no assumpticns are made about the shape of the buckling

rmode in the axial coordinate direction.

Buckling pressure factors X and mode shapes corresponding to two BOSOR4

models are displayed in Fig. 181, onein which the rings are smeared out (a,b)

and the other in which they are di3crete (c-f). A value of X = 1.0 would

indicate perfect agreement with the results of the optimization programs

242, 243]. It is seen that the general instability mode and pressure from

the model with smeared rings (b) and the local instability mode and pressure
I..

from the model with discrete rings (f) agree well with the corresponding

4' ,18-x
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modes and pressures from the simplified optimization analysis, but that the

* . general instahility pressure from the model with discrete rings (e) is more than

10% below that for the models with smeared rings (b). The general instability

modt_ correspond'ng to this model has a slight waviness which represents a

mild interaction with the local instability mode (f). This interaction effect

becomes stronger as the critical circumferentia! wave numbers n for generalcr

and local instability approach each other.

Figure 182 reveals a similar reduction in predicted buckling pressure due to

interaction of the riuig rolling mode #2 [Fig. 180(f)] with the local skin

buckling mode [Fig. 130(b)]. The dashed line in Fig. 182 corresponds to

a buckling analysis in which tne ring is treated as a discrete line stricture

* with certain cross section area, A, moments of inertia I, I , for in-plane

"bending stiffness and out-of-plane bending stiffness, and torsional rigidity

GJ. This line structure is located eccentrically with respect tf the shell

reference surface: at the shear center of the ring, which is where the

flange .nd web intersect. In 1.,is discrete ring model the ring cross section

"is frc. to translate and rotate but cannot deform. The buckling mode resembles

that drax'n in Fig. 182 except the web cross section of the ring remains

straight and the flange is therefore forced to bend more in its otwn plane

(axial direction). The solid line in Fig. 182 corresponds to a discretized

model in which the web and flange of the ring are treated as shell branches.

During buckling in the mode indicated, the web cross section of tfe ring

bends as shown, allowing the shell wall to buckle locally between rings without

forcing the flange to bend in its plane as nuch as it has to in the discrete

ring model.
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Figures 183 - 185 demonstrate a more complex exavple of buckling

of an internally ring-stiffened cylindrical shell subjected to uniform external

hydrostatic pressure. half of the cylinder length is shown in Fig. 183

with symmetry conditions imposed at the plane of symmetry and simple support

conditions (S2 in Table 8) imposed at the edge. The insert in Fig. 183

depicts the discretized branched shell model provided as input to BOSOR4

[ 141.

The configuration with dimensions identified in Fig. 183 was arrived at

in the following way: Given that the structure must be an internally ring-

6.stiffened cylinder with Young's modulus E = 17 x 10 psi, radius r 50 in.,

"and length L 100 in., we are asked to find the configuration corresponding

to minimum wtAglit subject to the constraint condition that the perfect shell

will not buckle under a uniform external hydrostatic pressure of 1820 psi.

Application of tiue optimization programs described in Refs. [ 242] and 1 243]

leads to a minimum weight configuration with very closely spaced rings, as

with the cylindrical shell generator depicted in Fig. 181(d). If one is

willing to accept a rather small penalty in weight (about 3%) one can impose a

lower bound on the ring spacing so that the final design is more amenable to

% analytical treatment as a branched shell. (Actually, the ring stiffeners in

.. P,.

"- submarine pressure hulls, for example, are farther apart than a simple

3O' optimization scheme would dictate because of the expense and practical spatial

problems encountered in welding the rings to the shell.) The dimensions

called out in Fig. 183 correspond closely to the optimum design with the lower

bound on ring spacing set equal to 7.692 in. This optimum design is generated

from the simplified buckling models described in connection with Fig. 180.

The dashed line near the bottom of Fig. 183 shows buckling pressures predicted

from simplified theory corresponding to ring web wide column buckling (n = 0;
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Fig. 18 0(g)), general instability (n = 3; Fig. 180(a)), ring rolling

mode #1 (n = 6; Fig. 180(e)), ana local skin buckling (n = 12; Fig.

180(b)), all of which are active buckling constraint conditions at the

optimum design point.

The other curves in Fig. 183 were all obtained with the BOSOR4 computer

program [ 14]. If the shell were perfect and if the material remained

elastic, buckling would occur with five circumferential waves at a pressure of

1646 psi, as indicated by the minimum load on the curve labeled "Branched

-. shell (nonlinear)." This curve represents results of the most accurate

- analysis of the shell. Unlike the example shown in Fig. 181, for which there

- is significant modal interaction between general and local skin instability,

the modal interaction here resembles that demonstrated in Fig. 182: the

-. discrete ring mode& yields erroneous results for high n because the ring

•-• web is not permitted to deform in that model, with the result that far too

* much strain energy is predicted to be stored in the flange during buckling.

Replacement of the ring by a simple support restraint (v = w 0; Ub b free),
b b 0 'U9~

as is done in the crude optimization analysis, leads to a far better estimate

of the actual buckling pressure corresponding to n = 12 circumferential waves,

as seen from the location of the open circle on the dashed line at n = 12.

Predicted buckling modes corresponding to bifurcation with linear prebuckling

analysis are exhibited in Fig. .84. Local instability, identified by circles

or squares in Fig. 183, corresponds to modes in which the attachment lines

of th2 ring webs to the cylindrical shell do not move radially or LtrrLnferPn-

tially, as illustrated in Fig. 184 (a, d, e, f, and i). General instability,

identified by triangles in Fig. 183, corresponds to modes in which at least

one of these attachment lines moves radially, as illustrated in Fig. 184
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(b, c, g, and h). Note that for n > 6 the two curves in Fig. 183 labeled

"Discrete Rings" correspond to modes of the types (d) and (e) in Fig. 184.

From the branched shell model it is clear from Fig. 1840(-..) that the degree

of bending in the ring webs increases with increasing n. This is because the

strain energy stored in the flange increases with n4 for a given amplitude

"of flarge neutral axis modal displacement in the axial direcLion. For

n = 12 circumferential waves there is a great deal less modal axial flange

displacement in the branched shell model than exists for n = 5, and for n = 5

there is less than for n = 0.

Figure 185 shows the prebuckled state and buckling modes corresponding to the

lowest curve in Fig. 183. The critical buckling mode for n = 5 circumferential

waves is very different from that corresponding to the linear treatment.

"l- '.Comparisons with Tests in which Local Ring Deformations are Important

*,,.. Crippling of Ring Web: Figure 186 shows the discretized model of a ring and

buckling loads predicted for a range of circumferential waves n. BOSOR4 gives

two minimz' in the range 2 < n < 16. The minimum at n = 2 corresponds to a

mode in which the cross section does not deform- i.e., the ring ovalization

mode. Buckling pressures calculated for this mode are very close to those

2_ 3.computed from the well-knrwn formula q cr = EI(n -1)/r , in which q is the

critical line load in .b/in. (pressure integrated along segmentb, E1 is

the bending rigidity nf the ring, and r is the radius to the ring centroidalc

"* axis. The minimum at about n = 11 corresponds to buckling of the web in a

mode similar to that shown in Fig. 180(f). In a test [ 244] the web

crippled at about 1500 psi. The n = 2 mode was not observed because the ring

* was held in a mandrel that prevented the unlimited growth of this rxde.
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Wide Column Ring Web "Buckling": This type of local instabilit; of ring

- stiffeners is described in the discussion associated with Fig. 180(g).

2*. An example of an externally pressurized ring-stiffened cylindrical shell that

failed in this axisymmetric mode [ 245] is shown in Fig. 187(a). In the

BOSOR4 model of the shell the slender webs are treated as flexible annuli

and the flanges as discrete rings. The problem is a good illustration of

a typical sequence of computer runs that might be required for analysis

of a complex shell of revolution where several failure modes are possible.

As with the case shown in Fig. 183, the choice of a linear bifurcation

buckling treatment for a preliminary analysis is logical because one suspects

"that bifurcation buckling may be the primary mode of failure, and approximate

buckling pressures for a wide rnge of circumferential wave numbers can be

obtaine. without too large an expenditure for computer time. It is likely

that more than one minimum buckliri., pressure exists in a plot of p (n) vs n.

The shell may buckle axisymmetrically through 'sidesway' of the deep ring

stiffeners; it may buckle nonsymmetrically in a low-n general instability mode

in which cylinder and rings move together; it may buckle nonsyimtetrically in a

low-n general instability mode in which cylinder and rings move together;

it may buckle nonsymmetrically in a higher-n 'panel' or 'bay' mode in which

thp rings are located at displacement nodes in the buckle pattern; or the webs

of the rings may buckle nonsymmetrically in a still-higher n mode similhr to

that shown in Fig. 186. The choice of a linear bifurcation buckling

analysis with a wide range of n will reveal all of these modes and cause

to be calculated approximate critical pressures corresponding to them. Figure

187(b) shows the results of such an analysis. The lowest minimum corresponds

to axisymnmetric bifurcation buckling ('sidesway' of the webs). This is the wide

column buckling mode described previously.
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NonlitLear axisymmetric analysis of this structure is analogous to a post-

buckling analysis of a wide column or rather a group of wide columns, one

corresponding to each ring web. Figure 188 gives the stability determin-

ant jK (p,n=O)j as a function of external pressure. At a pressure close to

the bifur-cation pressure obtaiined with use of linear theLry, the stability

determinant Lhanges direction rather abruptly, indicating fairly large changes

in prebuckling deformations for small changes in pressure. Since the stability

determinant does not change sign there is no axisymmetric bifurcation. Per-

formance of the nonlinear prebuckling analysis in this case is analogous

to conversion of the bifurcation buckling analysis of a perfect structure

"to a nonlinear collapse or nonlinear post-buckliig analysis of an imperfect

structure, in which the imperfection is the nonuniformity of the prebuckling

state.

Figure 189 contains plots of web tip deflections and effective stresses as

functions of external pressure ir the pressure range corresponding to the

rather abrupt change in behavior of the stability determinant. Frames #2 and #3

display sudden changes in the rate of sidesway because they are far enough

from the clamped boundary so that their webs behave like almost perfect wide

columns in axial compression. Being almost perfect, their load-deflection

"curves develop high curvatures in the neighborhood of the bifurcation point

O predicted from linear analysis. Frame #1 is in the edge bending "boundary

layer" so that the junction of its web and the shell wall undergoes considerable

meridional rotation. Thus, the axial deflection w of the flange of Frame #1

"O increases at a fairly uniform rate compared to those of Frames #2 and #3.

The web of Frame #1 behaves in a manner similar to a very imperfect wide

column or to a column with considerable load eccentricity. The sidesway or

wide column post-buckling deflections of Frames #2 and #3 cause the radial

,compressive membrane stresses, built up because of hoop compression in the
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- K flanges, to be relieved, thus producing the abrupt change in behavior

of the stability determinant.

In a test of this shell [ 245] the rings simply fell off at a pressure

slightly above 3200 psi. The failure was due to high stresses at the junc-

tions of webs and shell.

General Instability of RLng-Stiffened Shallow Conical Shell: Figure 190

shows a very light-weight:, shallow conical shell with internal Z-shaped ring

stiffeners. This shell was used as an aerodynamic foil to decelerate the landing

module for the NASA Viking mission to Mars 246]. Because of the stringent

mass limitations and the very small loadings which the shell was designed to

support, the wall and rings were fabricated with very thin gage material.

Figure l 00(c) shows a specimen buckled under uniform external pressure.

This pressure is reacted axisymmetrically at the large payload support ring

locatea -idway along the cone generator. Comparisons between test and theory

-i 11] in Fig. 190(d) reveal that the local deformations of the rings

!-° must be accounted for in order to obtain an accurate prediction of the

critical pressure corresponding to general instability. The buckling mode shape

•- depicted in Fig. 190(e) clearly demonstrates the significant deformation of

the rings during buckling.
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Section 7

BUCKLING OF PRISMATIC SHELLS AND PANELS

Summary

Figure 191 gives several examples of prismatic shells and panels. These are

structures the cross sections of which are thin and do not vary in one of the

coordinate directions, generally called the axial direction. In this chapter

a method will be described in which a computer program for the analysis of

shells of revolution can be used to predict buckling of prismatic shells and

panels. Results will be given of convergence studies applied to cylindrical

shells subjected to external lateral pressure. These studies demonstrate

the validity of the technique. The method will then be applied to yield

predictions of bifurcation buckling loads of noncircular cylindrical shells

under axial compression or external pressure and failure of corrugated and

beaded panels under axial compression. The effect of manufacturing processes

on buckling and crippling of corrugated semi-sandwich panels of the type

from which the rocket payload shroud shown in Fig. 5 is made will be shown.

A discussion of modal interaction in axially compressed column- and panels

will follow. One form of this phenomenon has already been illustrated in the

case of bif rcation bucklii. of ring-stiffened cylindrical shells subjected to

uniform external hydrostatic pressure (Figs. 181 - 185). It will be

shown that buckling loads for optimally designed structures, that is

structures configured such that local and general instability occur at the

same or almost the same load, are sensicive to initial geometrical

imperfections.
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The section closes with brief discussions of the effect of transverse ehear

deformations on buckling of panels made of laminated composite material.

Use of a Computer Code for Shells of Revolution

to Predict Buckling Loads of Prismatic Structures

Introduction

The motivation behind much of the research activity in shell analysis is to

reduce computer time and core storage required to solve complex problems.

It is advantageous whenever possible to reduce the number of degrees of

freedom requited by separation of variables and to optimize computer

efficiency by setting up stiffness matrices with as narrow band widths as

possible. Currently, problems in complex shell analysis can be classified

into two groups: that which involves two-dimensional discretization and

that which involves one-dimensional discretization. The two-dimensional

numerical analysis generally requires one to several orders of magnitude

more computer time to solve than does the one-dimensional problem. The

computer time increases quadratically with the bandwidth of the stiffness

matrix and linearly with the number of degrees of freedom. Matrix band-

widths for two-dimensional problems are much wider than those for one-

dimensional problems and the number of degrees of freedom required for

convergence to a given accuracy is greater.

The establishment of the technique described here [ 82] was motivated by

the need for economical computer solutions to problems traditionally
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K
associated with two-dimensional numerical analyses bat amenable by means

of an exchange of independent variables to solution by separation of

variables with consequent reduction to one-dimensional numerical treatment.

In this class are included linear stress, buckling and vibratiun problems

". ""for simply-supported prismatic shells. Stress analysis can be performed

for prismatic shells with loads that vary in the two coordinate directions.

Buckling and vibration analyses are restricted to systems in which both

the loads and the geometry are prismatic, that is, consta;•t in the axial

• "direction.

Figure 191 gives examples of prismatic shells: Fig. 191(a) shows an

oval cylinder which may be subjected to combinations of pressure and axial

0. loading; (b) shows a cylinder with a pressure or thermal load that varies

"only in the circumferential direction; (c) and (d) represent typical

advanced structural panels considered for hypersonic vehicles, lightweight

rocket payload shrouds, and space shuttles; and (e) shows a general prismatic

shell with stringers which can be treated as discrete elastic structures.

The oval cylinder under axial compression has been investigated by Kempner

and Chen, [ 248] Hutchinson, [ 249] and Almroth, Brogan, and Marlowe [ 250].

S-- Elliptic cylinders under external pressure have been treated by Yao and

Jenkins [ 251]. Liaw [ 252] gives a survey of papers published before

-. April 1969 on the stability of cylindrical and conical shells of noncircular

cross section. Buckling allowables for nonuniformly loaded cylinders

have been calculated by Almroth [ 253] who investigated band-loaded

cylinders in which the external pressure varies as P0 + Pl cose !i the

circumferential direction. Ross, et al. [ 106] determined experimentally
N'.

critical temperatures of cylinders heated along an axial strip. Examples of

0
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buckling under nonsymmetric loading in which the nonsymmetrical nature of the

loading is retained in the stability equations are given in Figs. 148 and

154.

"Local buckling and crippling loads for axially compressed corrugated and beaded

•- - sheets have been determined theoretically and experimentally by Plank,

Sakata, Davis, and Richie 1 254]. Buckling loads were determined experi-

mentally by Shang, Marulic, and Sturm [ 255] for axially compressed longi-

tudinally stiffened cylinders. The geometry of the specimens of Ref. [ 255]

S-was such that the circumferential buckling half wave-length and stringer

spacing were approximately equal, indicating the need for analytical treat-

ment of the stringers as discrete. Egle and Sewall [ 256] and McDonald

2571 have calculated vibration frequencies for cylinders with stringers

included as discrete structures.

The structures shown in Fig. 191 and analyzed in Refs. [ 248- 257] are

all prismatic. If they are simply supported at the generator ends they can

be analyzed as portions of shells of revolution in which the length of the

prismatic shell is given by

L Trb/n ( 62)

where b is the radius from an axis of revolution to some reference surface

"and n is the number of complete circumferential waves. The results presented

here were thus obtained by means of the analysis and computer program

described in [ 14].
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°* Analysis Technique

Buckling of oval cylinders or nonsymmetrically loaded cylinders can be treated

by a modeling of the cylinder as a portion of a torus with a very large

radius b. Figure 192 illustrates the taodel. A cylinder of length L,

small diameter d and thickness t is modeled as a small portion of a torus with

radius b. As b - and L = constant the short curved cylinder approaches a

straight cylinder. The cross section need not be circular, nor the thickne-.s

constant. The pressure can vary along the length as well as over the circum-

ference. A limitation of the model is that the cylinder must be simply-

supported at the ends O"b = 0 and 0-b = L.

0 Since the torus is a shell of revolution, the BOSOR4 code [ 14] can be used

to analyze it without any special alteration. What has been done here in

effect is to exchange the independent variables in the analysis of a cylinder:

the axial variable s for the cylinder becomes the circumferential variable

-b for the torus and vice versa. The circumferential displacement distri-

bution of the cylinder, conventionally expressed in terms of sinnO or cosn0

with n the input circumferential wave number, becomes the meridional displace-

ment distribution of the torus, now expressed in terms of the displacement

values at discrete nodal points in the finite difference or finite element

r0 analysis. Similarly, the meridional displacement distributions of the

-C• cylinder, conventionally expressed as discrete mesh point variables, are

now expressed in terms of sinnO or cosne with n being the number of waves

around the large-diameter torus. Given the radius b, the length of the

cylinder is determined by the wave number n, which in the limit of very large

b is a very large number (such as 10,000, for example). The boundary con-

ditions at 0-b = 0 and 0-b = L are simple support: N m u w 0.
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The user has no choice of boundary conditions at 6-b = 0 and e.b = L, since

• °the simple-support condition arises from the underlying assumption that the

dependent variables and their derivatives vary in this direction as sinne

and cosnO.

The loading on the cylinder in Fig. 192 is expressed as a Fourier expan-

sion over the interval -L < O-b < L. For example, the pressure loading in

Fig. 192 (uniform for 0 < O'b < L and variable around the circumference, s)

is Expressed as a Fourier sine series, thus:

p(s,O) = f(s).g(O) (63)

in which
NMAX

*4
g(O) rd sin(mnO .b)/L ( 64)

m = 1,3,5...

The integer m is the number of half-waves in the interval 0 S e0b S L.

Therefore, the corresponding wave number n for the complete torus is

n = mfb/L. The question arise-, why not expand the load in a cosine series

Sin the interval -L • e'b s L? This is not possiLle because the m = 0 term

corresponds to an infinite cylinder (L = 21b). The longest half wavelength

in the Fourier expansion of the load must be equal to L or an integer

fraction of L.

Thus, the finite-length, simply-supported, oval cylinder under external

pressure is analyzed as a toroidal shell with ve-y large radius b and sub-

jected to loads which vary rapidly around the circumference. In the section

"Numerical Results" the belhavior of a simply-supported externally pressurized

elliptical cylinder is discussed.
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There are additional advantages of being able to analyze c)linders in this

manner. Note in Fig. 191(e) that the wall properties (thickness,

modulus) in the s-direction need not be constant. Also, note that longi-

"= tudinal stringers can be included in the analysis as discrete elastic

structures. With the cylinder analyzed as a portion of the torus, the

cylinder stringers are rings in this application of the BOSOR4 code. Also,

='- cylindrical or flat panels with stringers, corrugations, beads, or other

geometrical peculiarities and with arbitrary boundary conditions along

Vi generators can be treated, since the generators are now meridional stations.

Some of these cases are discussed in the following sections.

Convergence Studies: The application of BOSOR4 to the stability analysis

of cylinders of noncircular cross section and nonsymmetrical loads was

validated by convergence studies for uniformly loaded circular cylinders

analyzed as portions of toroidal shells with various radii b and various

numbers of meridional nodal points. Membrane prebuckling analysis was

used in the convergence studies. For given values of b, the cylinder

lengths were established as described above by selection of appropriate

circumferential wave numbers, n. This procedure is valid for simply-

.' supported cylinders the buckling modes of which have an integral number

"of half-sine waves along the length.

0

Tables 19- 21 and Figs. 193 and 194 give the results for hydro-

statically compressed circular cylinders. In Table 19 convergence

*" with increasing toroidal radius b ib given for cylinders with L/a = 0.6

and L/a = 6.0, in which "a" is the radius of the cylinder. The values of
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L%-
-] pa/Et for b = infinity are calculated from Eqs. (II) and (12), pp. '24-L25

•. -. of Flugge [ 258]. The lowest two eigenvalues are obtained in each zase.

In the limit of very large b these eigenvalues correspond to two wave

numbers, n = 10 and n 12. Figure 193 shows the normalized buckling

displacement w for the second ei•,envalue for increasing values of toro'dal

radius b. With large b the distribution over 1/4 of the circumference of

the cylinder approaches a cosine wave with three full waves. This mode

corresponds to n = 12 for the complete cylinder. Symmetry conditions

are imposed at the ends of the toroidal meridian. All calculations were

performed in double precision on the Univac 1108. The data points in

Fig. 193 indicate nodal points. The discretization method is described

in detail in the discussion and equations associated with Fig.20 of REF. [430].

, -Table 20 and Fig. 194 represent the results of a convergence study in

which the number of mesn points is varied for a given (very large) value

of b. The buckling modes plotted in Fig. 194 correspond to n 10 waves

"around the circumference of the cylinder with L/a = 0.6. Table 21 giveQ

the convergence of buckling loads with increasing number of nodal points

for the cylinder with L/a = 0.6 analyzed as a cylinder, not as a portion

of a larFe-radius torus. These convergence studies indicate the degree

of accuracy obtained with the BOSOR4 code and provide a guide to the user

* of STAGS [ 48] or other large-scale two-dimensional computer codes as to

the number of mesh points required for adequate accuracy.

* Numerical Results

In this section numerical results are presented for nonuniformly loaded

*" circular cylilders, externally pressurized and axially compressed noncircular

cylinders and axially compressed corrugated and beaded panels.
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Nonuniformly Loaded Circular Cylindrical Shells: An analysis was made of a

simply-supported cylinder subjected to a band pressure load which varies

around the circumference as shown in Fig. 195. The cylinder was modeled

as a portion of a torus with b = 20,000 in. and n = 10,000. Comparisons

o erm made with the theory of Almroth [4.253] for a cylinder with a = 1.0 in.,

t = 0.0025 in., L = 2r in. and AI/L = 1.0 and ).4. For the case AL/L = 1.0,

5Almroth obtains p a/(Et)X 10 = 2.253. The BOSOR4 program yields a value

"2.292 for this parameter. The buckling modal displacement w is displayed

at the bottom of Fig. 195.

"" Figure 196 shows the normal pressure loading at s 0 on the cylinder with

L = 27, a/t = 400 and AL/L = 0.4. The load is expanded in a 10-term Fourier

sine series in the interval -L O O'b S +L (see Fig. 792). Figure 197

gives the axial distributions of stress resultants corresponding to the 10-

term Fourier sine series expansion of the banded pressure load shown in

Fig. 196. Figure 198 shows the circumferential distribution of stress

resultants at the cylinder midlength 0'b = L/2 = n inches. These values are

V, used in the stability analysis, in which the assumption is made that they

are constant around the circumference of the equivalent torus (along the axis

of the cylinder) in a manner analogous to the treatment in the problems

S- illustrated in Figs. 149, 150, and 155- 159. Therefore, the

* buckling loads calculated in BOSOR4 are independent of the bandwidth of the

- pressure for bandwidths that are long compared to a boundary layer length

�- a1/t'/2 5
(at)-. Thus, PcRa/(Et) X 10 equals 2.292 compared to the value of

O° 3.0913 obtained with Almroth's more exact analysis [ 253].

202

02



Stress and Buckling of Elliptic Cylinders: Figure 199 shows an elliptic

cylinder and gives various dimensions and material properties. The cylinders

"P.' are subjected to uniform external pressure on the curved surface only. Yao

and Jenkins [ 251] obtained buckling pressures from tests on simply-supported

polyvinyl chloride shells. They compared the test results with a theory

in which the prebuckled state is calculated from linear membrane theory and

buckling pressures are obtained from an eigenvalue problem based on the

"Galerkin method.

* The BOSOR4 computer program w.- used to calculate stresses and buckling

pressures for elliptic cylinders of Lhe geometries shown in Fig. 199.

The oval cylinders were analyzed as toroidal shells with very large b and

n as described above. Thr uniform external pressure was expanded in a

20-term Fourier sine series according to Eqs. ( 63) and ( 64). Figure

200 displays the axial distributions of normal displacement and in-plane

stress resultants at s = 0 (end of minor axis B) for an external pressure

of 1 psi on an elliptic cylinder with A/B 2, t = 0.019, and various

values of L. The quantity eOb/L is the normalized distance along the

circumference of the torus of radius b (see Fig. 192). Figure 201 gives

the circumferential distributions of rotation about a generator and in-

plane stress resultants at the midlength b/L = 0.5 of the oval cylinder.

Plots cover 1/4 of the circumference. The stress distributions are very

similar to those predicted by membrane theory.

* Three hundred degrees of freedom were used, and 1 min, 56 sec of UNIVAC 1108

time were required for the double-precision calculations. The prestress

state was checked by a run with the linear version of the two-dimensional

finite-difference program, STAGS [ 48]. Excellent agreement was obtained.
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"Note that as the length L of the shell increases the hoop stress resultant

- at L/2 approaches the values predicted from membrane theory, pa = -8.0 lb/in.

at the end of the minor axis (s = 0) and pa = -1.0 lb/in, at the end of the

major axis. However from simple static equilibrium conditions for an

elliptical ring it is known that as L ÷ the hoop stress resultant must

approach -2 lb/in. at s = 0 and -4 lb/in, at s = Send for uniform external

pressure of 1 psi. Clearly, the elliptical cylinders of length 4 to 10 in.

with cross sections as shown in Fig. 199, while long compared to bendiag

* boundary-layer lengths, are short comparea to lengths required for the

effect of end cross section fixity to die out.

"" Buckling pressures were calculated for several cases with A/B = 2.0 and

A/B = 1.5. The results, compared with Yao and Jenkins' tests and theory,

are presented in Figs. 202- 206 and Tables 22- 24. Predicted

buckling pressures are always higher than the test values and ý_re rather

inaccurate for the thicker shells. The thicker shells apparently buckle

by collapsing gradually father than failing by a sudden change (bifurcation)

in the mode of deformation (Fig. 4 of Ref. [ 251]). It is probable,

therefore, that the present theory is not valid for the shells with

nominal thickness 0.050 and 0.090 in. A nonlinear, two-dimensional collapse

analysis such as that of Ref. [ 250] is required for these cases. This

analysis has been performed by Marlowe and is reported in Ref. (259].

Figures 204- 206 show the buckling modes for externally pressurized

S•Oelliptical cylinders with A/B = 2, lengths L = 2,4,6,10 in. and thickness

t = 0.019, 0.029 and 0.091 in. Note that the plot corresponding to L = 10

in Fig. 204 covers 0 • • 1800 of arc length, whereas all other plots

S

204

o



in Figs. 204- 206 cover 0 • 90*. With the exception of the case

A/B = 2, L = 10, t = 0.019, '-he buckling loads given in Figs. 202- 203

correspond to modes symmetrihal ,'bouc the ends of both the minor and major

axes. The lowest buckling pressure for the exceptional case corresponds

* to displacements symmecrical about v = 0* and antisymmetrical about ip 90*.

For all cases modes antisymmetrical and symmetrical about p 900 corre-

Sspond to pressures witain a few percerz of each other.

Tables 22 and :3 give buckling pressures in psi for the simply supported

elliptical cylinders with A/B = 2 and 1.5, respectively. Theoretical values

are compared with Yao and Jenkins' test results [ 251]. Three theoretical

1 2 3 1values, pCR 'CR and pCR , are listed for each geometry. The pCR corre-

sponds to BOSOR results with both prebuckling in-plane stress resultants

and prebuckling rotations X0 about the generators included in the stability
2

analysis. The pCR are calculated neglecting the cross section shape change

(effect of X0 ) in the stability analysis. Note that the X0 effect becomes

3larger as L and t increase. The pCR are the analytical results from

Ref. [ 251].

Table 24 gives convergence properties of buckling pressures for the

elliptical cylinders A/B = 2, L = 10 in., and various values of t. Tne

number of terms in the Fourier sine series representation of the axial

load distribution is varied. In this study the value of the pressure at

the midlength of the cylinder is maintained at unity, independent ol the

number of terms taken in the series.
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*o Cylinders of Noncircular Cross Section under Axial Compression: Buckling

loads and post-buckling behavior have been determined for axially compressed

cylinders of oval cross section by Kempner and Chen[ 248] and Hutchinson

2491. Almroth, Brogan and Marlowe [ 250] have studied the not-.inear

*' behavior of axially compressed oval conical shells through use of a two-

- dimensional finite difference analysis. The BOSOR4 program [ 14] can be

used to determine bifurcation buckling loads from linear theory for axially

compressed, simply supported elliptic cylinders. Membrane prebuckling

theory is used in the analysis. The cylinder is treated as a portion of a

large-radius torus. Figure 207 shows the buckling modal displacements in

the circumferential direction for 0 ! : S 1800. The axial distribution (normal

to the plane of the paper) is a half-sine wave. The lowest two eigenvalues

are very close to ea-I other and the m. are symmetric and antisymmetric

""about 4 = 900. Note that bifurcation buckling of axially compressed oval

- cylindrical shells does not necessarily signify failure of the structure.

Fig. 57 shows that post-buckling load-carrying capability exists in excess

* of the bifurcation load. However, nonlinear two-dimensionally discretized

* models must be used to predict tl'is collapse load.

Figure 208 exhibits buckling modes for an axially compressed simply

supported cylinder with a pear-shaped cross section. Membrane theory was

* used in the prebuckling analysis. The lowest two eigenvalues, N - 24.02 lb/in.
cr

and 34.74 lb/in, correspond to uniform loading over the entire perimeter

of the cross section, and the highest eigenvalue, N = 586 lb/in., corre-"cr

O sponds to loading over the curved portions oni;. Syunetry conditions were

imposed at points A and B. The axial displacement variation is a half-sine
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'O wave. The lowest twi eigenvalues 2orrespond to buckling of the flat sections.

For axial loads higher than 35 lb/in, these flat sections are considered to

be buckled and thus carrying no load. The third buckling mode illustrated in

Fig. 208 therefore corresponds to a model in which only the curved portions

of the pear-shaped cylinder are loaded. The buckling mode is similar to

the displacement distribution corresponding to collapse obtained with the

STAGS program [ 48]. However, a much lower collapse load is obtained wit'

STAGS because the prebuckling deformations in the flat plate segments

*"! propagate into the curved segments with increasing load, thereby intro-

ducing imperfections into an imperfection-sensitive structure. The axial

load at collapse integrated over half of the cross section perimeter is

1186 lbs according to the nonlinear collapse analysis with use of STAGS,

* results of which are displayed in Fig. 58. The axial load at bifurcation

of the curved portions according to the BOSOR4 prediction is 1880 lbs over

half of the pear-shaped cross section.

I

The reduction from 1880 to 1186 lb is due to inclusiin in the STAGS analysis of

the prebuckling deformation which, with increasing imposed axial end

shortening, propagates from the flat portions into the curved portions.

rendering imperfect these imperfection-sensitive parts of the shell.

The BOSOR4 analysis is performed by treatment of the pear-shaped cylinder

as a shell of four segments, as indicated in Fig. 208. Nodal points

in the discretized model are indicated by small circles.

Bifurcation Buckling of Axially Compressed Panels

Introduction

As in the case of ring-stiffened cylinders, axially compressed longi-

tudinally stiffened panels are subject to several types of failure:
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long-wavelength general instability, intermediate-wavelength (panel)

instability between stiffeners, and local crippling. These failure modes

can often be analytically determined by separate analyses, as described for

ring-stiffened cylinders in connection with Fig. 180, because the wave-

*.-. lengths associated with them are often quite different in magnitude.

However, modern lightweight structures are frequently constructed of panels

with deep, slender stiffeners, the distance between the stiffeners being of

the same magnitude as their depth. For such cases the intermediate-wavelength

"and the crippling modes of buckling couple and a unified analysis becomes

"necessary. It has been shown in a previous section that this is true for

ring-stiffened cylinders in which the depth of the web is the same order of

"magnitude as the distance between rings. Also, as will be demonstrated in

this section, the general instability predictions may be rather sensitive

to local deformation of the cross section of a complex panel. We have

already seen an example of this sensitivity in the case of buckling of a

lightly stiffened shallow conical shell used for deceleration of a payload

entering the Martian atmosphere (Fig. 190)

Until about 10 years ago axially stiffened panels were analyzed as equivalent

orthotropic plates. A great deal of work of this type was done by Becker,

Tsai, Block, Card, Mikulas, Anderson, Jones, Peterson and others at NASA in

the '50s and '60s. References to their work are given in Ref. [ 260]. In

1968 Wittrick [ 261] published an analysis of prismatic structures composed

"of flat plates. Since 1971 a series of papers [ Q2, 260, 262- 269] .. ,s

0 appeared on the treatment of buckling and vibration of prismatic shell

structures. In most 0' the papers the buckling and vibration modes are
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'0
assumed to be sinusoidal in the axial direction, with the wavelength of

* . deformation the same in all of the segments of the comp)ex structure. This

- . assumption, which limits the analysis to simply-supported panels, permits

separation of variables with consequent reduction of the problem from two

dimensional to one dimensional. Wittrick's analysis [ 261] predicts the

•- - three types of instability identified in the first paragraph - general,

panel, and crippling; the treatment of Viswanathan et al. [ 260] extends

that of Wittrick to allow orthotropic wall properties and intermittent

elastic beam-type supports; Williams [ 263] extends Wittrick's analysis

to include vibration and to incorporate substructuring techniques; Wittrick

and Williams [ 267] formalized their treatment in a computer program

"called VIPASA; and Anderson and Stroud combined VIPt ith an optimization

routine by Vanderplaats and Moses [ 270] to produce a computer program

- called PASCO for the optimization of layered, stiffened composite panels [ 269].

5 Figures 209(a) and (b) show parts of a semisandwich corrugated panel

.... undeformed, buckled (a) and crippled (b) under an axial load (normal to

the plane of the paper). Classical analysis of buckling of such a panel

treats it as an equivalent orthotropic sheet with the wall cross-section of

course not permitted to deform locally. The presence of such local deforma-

tions makes it very difficult to assign a priori a torsional stiffness per

length, for example. This J-factor is particularly important in this case

-• because of the enclosed trapezoidal areas. Local distortions also affect

the axial bending stiffness, another significant determinant of the predicted

buckling load. The degree of local distortion is largeJy governed by the way

- in which the corrugated sheet is fastened to the flat sheet. Figures 209(a)
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and (b) correcpond to cases In which tia centers of the troughs of the

corrugations are riveted to the sheet. Bonding along the entire widths of

the troughs markedly reduces the amount of distortion with corresponding

Increase In the stiffness and buckling load. This difference between

bonding and riveting would nor be reflected in a classical orthotropic

plate analysis, except through the empirical introduction of appropriate

knockdown factors applied to the constitutire law to bring test and theory

Into agreement.

Classical predictions of crippling loads of sections composed of thin

flat sheets such as shown In Fig. 209(b) are based on analyses of long

thin axially compressed strips simply-supported or clamped along the

"0corners" or at rivet or bond lines. With regard to Fig. 209(b), an

assumption of clamping at the points labeled symmetry would obviously

load to overestimation of the crippling load. If simple-support were

assimad at these points it Is not clear whether t!:e crippling load prediction

would be too high or too low. The actual condition depicted in Fig. 209(b)

appears to be clamping to an elastic foundation with some unknown stiffness.

The simplifications of the various classical analyses lead to errors of

unknown magnitude. The errors frequently cancel, lending to fortuitous

agreement between test and theory or between predictions with crude and

refined models. An analysis is needed in which given structural configura-

tions are modeled in various ways.
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Numerical Results

The results presented next were obtained with the BOSOR4 computer program

14], in which the models are set up as described in the discussion asso-

ciated with Fig. 192. This analysis method can be used to determine

general, panel, and crippling instability of complex, built-up thin sections,

to evaluate various types of fastening techniques, to calculate the effect

of local wall distortions on over-all stiffness and stability, and to

evaluate quantitatively various simpler analytical models of a given complex

shell structure.

"Buckling of Axially Compressed Corrugated and Beaded Panels: Figures

* 191 (c) and (d) show typical advanced structural panel designs proposed

* for hypersonic vehicles and space vehicles. Reference 254 presents test

and theoretical results for several panel configurations subjected to axial

compression and shear at room temperature and elevated temperature. Panels

were tested for general (panel) buckling and local crippling loads.

In Ref. [ 254] buckling predictions are based on wide-column theory. Local

crippling predictions are based on simple buckling formulas derived for

constant-thickness plate and cylindrical elements representative of

individual components of the complex panels.

Two configurations are analyzed here for critical axial loads: a trapezoidal

"corrugation and a beaded corrugation. The geometry is shown in Fig. 210.

*• The thickness distributions and dimensions are taken from Ref. [ 254]. The

thickness of the beaded panel (Fig. 210(a)) is assumed in the present

analysis to vary linearly between stations where it is called out. That

of the trapezoidal corrugations is assumed constant in each of the flat
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-lL elements. The panels are treated in BOSOR4 as segmented shells of revolution

with very large radii b: for the beaded panel b = 105 in. and for the

4
trapezoidal-corrugaLed panel b = 10 in. Figure 210 shows the division

of the panels into segments with symmetry planes at which either anti-

symmetry conditions or symmetry conditions are imposed in the stability

analysis.

Figure 211 shows critical axial load/length N for the beaded panel of
CR

Fig. 210(a) as a function of wave number n or length L = 7b/n. The semi-

log plot covers lengths from 50 to 0.3 in. Three types of buckling occur

.* in this range of L, and their corresponding mode shapes are shown in

"Figure 211. The lowest critical load is associated with a long-axial-wave

"length panel buckling from bead-crest to bead-crest. The intermediate wave-

"length load corresponds to buckling of the beads as axially compressed

"perfect cylinders, and the calculated N from n = 150,000 to 400,000 is very
CR

2
* close to the otlassical value 0.6Et /R. The shortest length crippling load

corresponds to buckling of the flat regions 0.556 in. wide between beads.

The dotted curves represent critical axial loads for simply supported and

"clamped plates calculated from the appropriate formulas in Ref. [ 271]. Two

cases were run on BOSOR4, one with the angle a=0 (Fig. 210) and one with a=12%,

which represents the test configuration. In the tests the long panel mode was

first observed at a line load if about 412 lb/in, and a crippling mode involving

both flats and beads was observed at 1250 lb/in.

The BOSOR4 code is conservative in the prediction of the long panel mode,

. probably because the 30-in.-long test panel was not in fact simply supported
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* at the ends and because it was stable in this mode in the initial post-

buckling range. The BOSOR4 code is very unconservative in the prediction

of crippling of the cylindrical beads because this mode of failure is sensi-

tive to imperfections and occurred in the test at average stresses

"approaching the proportional limit of the material.

Figure 210(b) shows the trapezoidal corrugated panel, analyzed as a shell

. with seven segments. This many segments were taken to permit general

instability across the three flat segments labeled 3, 4, and 5. Such a mode

would be analogous to the long panel mode of the beaded sheet. In the

BOSOR4 analysis this mode did not appear, however. Nor was this type of

iuckling observed in the tests reported in Ref. [ 254].

Symmetry conditions imposed as shown in Fig. 210(b) permit the wide-column

mode for long panels (low n). In this case the wide-column mode corresponds

to the lowest eigenvalue for given wave number n if n < 4000 or L > about

7.5 in. The wide-column mode corresponds to the critical load if L > about

15 in. and the panel is free at the unloaded edges.

Figure 212 shows the critical axial load versus length L or wave number n.

The dotted curves represent calculation- based on formulas in Ref. [ 271].

Test values reported in Ref. [ 254] correspond to a line load of about

1120 lb/in. The good agreement might be expected since the critical loads

for configurations consisting of flat plates are not very sensitive to

initial imperfections, and the average stress at failure in the tests was

somewhat below the proportional limit of the material.
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Effect of Manufacturing Method on General and Local Buckling of a Semi-

Sandwich Corrugated Panel: An example of a semi-sandwich corrugated shell

"wall construction is illustrated in Fig. 5(b). The rocket payload shroud

shown in Fig. 5(a) has such a wall construction, which is further reinforced

by Z-shaped rings spaced 16 inches apart. Under nonuniform pressure loading

during ascent through the atmosphere this shroud is susceptible to buckling,

as exhibited in Fig. 149(c).

- °

Buckling pressures are calculated for the shroud in an approximate analysis

in which the corrugations shown in Fig. 5(a) are smeared out according to

the method of Baruch and Singer 1 160]. In such a model it is tacitly

assumed that on a scale of order of the dimensions of a single corrugatibn

* (the lengths d, c, and b in Fig. 5(b)), the cross section of the built-up

wall does not deform. However, in the actual structure there may occur in

the buckling mode considerable local deformation of the individual fiats of

the corrugation and of the smooth sheet between adjacent troughs of the

corrugation, especially if the critical mode has many rather short axial

waves, as shown in Fig. 149(c). This local deformation, which is a

modal interaction effect similar to those observed in Figs. 181(e), 182,

- •. 184 and 190(e), can be accounted for in an approximate way by application

of appropriate reduction factors to the stiffness coefficients C..
2IJ

derived from the Baruch-Singer analysis. The reduction or "knockdown"

"factors can be derived from detailed models such as shown in Figs. 213

and 214.

"Figure 213 exhibits branched shell models of semi-sandwich corrugated

panels corresponding to two types of fabrication, bonded and riveted. In

the model of the bonded panel the smooth skin and troughs of the corrugations
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are assumed to form a single wall of thickness t+ts, in which t is the

thickness of the corrugated sheet and t is the thickness of the smooth

sheet. The branched shell model consists of 13 segments, as illustrated

in Figs. 212(b,c). In the model of the riveted panel the troughs of

the corrugations form separate branches and are connected (clamped) to the

smooth sheet along discrete axial lines (normal to the plane of the paper)

labeled "RIVET" in Fig. 213(e). This branched shell model consists of

18 segments, as illustrated in Fig. 213(d). In both bonded and riveted

models the pitch of the corrugations is 1.848 in. and the thickness of the

flat sheet and corrugated sheet are 0.032 and 0.02 in., respectively. The

material is aluminum.

Figure 214 shows discretizid models, normalized buckling loads N and modes

for axially compressed simply-supported panels of various lengths L. The

compression is normal to tne plane of the paper and is considered to be

applied in such a way that the prebuckling axial strain is uniform over

all segments in the branched shell models. The normalized axial loads N

are calculated by division of the eigenvalues computed from the branched shell

models by eigenvalues computed from a model in which the corrugations are smeared

out according to the Baruch-Singer theory with no reduction factors [ 160].

The results displayed in Fig. 214 were obtained with the BOSOR4 computer pro-

gram from models in which flat corrugated panels are treated as giant annuli

with average radius from the axis of revolution equal to 2750 in.

The normalized critical loads N decrease with decreasing axial wavelength

because of an increasing amount of local distortion of the wall cross-sectioi.
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K Note that the distortion is greater for the riveted panels, and as one might

expect, the critical general instability lcnds are considerably smaller for

these than for the bonded panels.

"Crippling of bonded and riveted panels can be calculated with BOSOR4 in the

same way as general instability, the only difference being the axial wave-

length of the buckles, wnich is fixed by the circumferential wavenumber n,

as shown in Figs. 211 and 212. Figure 215 shows a crippled aluminum

panel and Fig. 216 gives plots of the critical axial load vs buckle half-

wavelength for models in which the extent of the bonded region is varied.

In the models symmetry conditions are imposed at the midwidth of the trough

'4• and at the crown of the corrugation. The dimensions of a corrugation are

* given in Fig. 217. In tests conducted at Lockheed [ 272] riveted panels

with the same cross-section properties assumed in these analytical models

crippled at approximately 1100 lb/in, and bonded panels crippled at apprrdi-

mately 2800 to 2900 lb/in. The rivet heads were about 0.25 in. in diameter.

Therefore, Model b in Fig. 216 represents a closer approximation to the

riveted test specimens than does Model a.

For the analysis of large structures fabricated of semisandwich corrugated

panels, or any other type of complex panel, it is clearly impractical to
L.%

* find buckling loads by division of the entire structure, or even a large

section of it, into minute segments such as done for the models shown in

Fig. 214. However, as already mentioned, these relatively small, accurate

• models can be used to calculate appropriate stiffness coefficients as input

to a theory in which the corrugations or other stiffeners are smeared out.

This haE been done for the semi-sandwich corrugationF and the results are

O shown in Fig. 217 and 218. The factors k1 and k3 are analytically
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"determined knockdown factors which depend on the axial half-wavelength of the

buckling mode. Their derivation is discussed in detail in Ref. [ 274].

Essentially, k accounts for the local distortion of the wall cross-section

due to axial bending and k3 for local distortion due to twist. A third

factor k2 is also introduced to adjust the circumferential bending stiffness.

This third factor is independent of the axial wavelength of the buckle

*• pattern.

"The analytically d -ermined knockdown factors kl, k2 , and k have been used

to predict stresses, deformations and buckling loads of ring-stiffened non-

symmetrically loaded payload shrouds with riveted and bonded wall construc-

tions. The shroud geometry, loading, prebuckling deflection and a buckling

* mode are shown schematically in Fig. 149. Rings are located on 16-in.

centers in the cylindrical portion of the shroud. These rings are stiff

enough to cause nodes in the buckle pattern. From Figs. 217 and 218 it is

seen that a 16-in bucl.ing half-wavelength corresponds approximately to

knockdown factors kI = 0.94, k3 = 0.3 for the riveted construction and

kI = 0.98, k3  0.6 for the bonded construction. The circumferential bending

stiffness factor k2 is 1.17 for riveted and 1.30 for bonded construction.

These analycically derived coefficients were used in BOSOR4 in a sulroutine

- for calculation of the constitutive law relating reference surface stress

and moment resultants to strains and changes in curvature (Ref. [430] )

* buckling stresses and (eflect:.ons and bifurcation buckling loads and mode

shapes were calculated for both riveted and bonded wall coiustructions. The

lowest eigenvalues correspond to 16 circumferential waves in both cases

with riveted construction yielding a load factor of 2.761 and bonded con-

struction a load factor of 3.362 times the nonsymmetric pressure distribution

displayed in Fig. 149(a) which was measured in a wind tunnel test.
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For axially compressed ,anels, variations in fastening techniques have just

been shown to have rather large effects on general instability loads and very

large effects on crippling loads. Also demonstrated is the use of a small,

detailed branched shell model to predict analytically stiffness properties

needed for the analysis of a large structure. While this study was performed

specifically for semisandwich corrugated panels, it is obvious that similar

models can be set up and explored for any complex panels with curved sections

- and panels built up of composite materials.

Modal Interaction and Imperfection Sensitivity

of Axially Compressed Prismatic Structures

Introduction

"Two Types of Modal Interaction: We have already seen several examples of one

tyre of buckling modal interaction: bifurcation buckling in which the critical

-". mode contains characteristics of more than one kind of buckling, such as

. - general and local instability. In Figure 181(e) is shown a general

instability buckling mode of a ring-stiffened cylindrical shell subjected to

uniform external hydrostatic pressure. The general instability bifurcation

".- .-buckling pressure predicted with the discrete ring model is about 10% less

* than that predicted with the smeared ring model because this mode corresponding

to the discrete ring model is not a pure sinusoid with one-half wave in the

' axial direction, but contains superposed on the half sine wave a small

*O amplitude short axial wavelength waviness with period equal to the ring

spacing. From Figs. 182 and 184 it is seen that buckling pressures
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predicted wvth models in whi.zh the webs of ring stiffeners are treated as

flexible shell branches are considerably lower than are those predicted

with diocrete ring models in which local deformation of the ring cross-

sectioa is not permitted in the bifurcation buckling mode. Similarly, in

Fig. 214 the local cross-section deformations of the buckled axially

compressed semi-sandwich corrugated panel are evident. They are super-

imposed on the half-sinusoidal spanwise "general" instability mode.

In all of these examples, the shells are assumed to be initially perfect.

* The modal interaction does not involve the prebuckling phase at all, but

involves an apparent combination, in the bifurcation buckling mode, of more

than one kind of buckling: In Fig. 181(e) modal interaction is a combi-

nation of general instability of rings and shell with local ("panel")

instability of the bays between adjacent rings; in Fig. 184 it is a

combination of "panel" instability of the bays between rings and local

bending or crippling of the webs of the rings; and in Fig. 214 it is a

combination of general instability of the corrugated panel and local

crippling of the flat segments from which the complex panel is built up.

The modal interaction effect to be discussed in this section is fundamentally

different from the examples just described. It is related primarily to

local imperfections in the structure which have the effect of decreasing

the stiffness of it in such a way as to decrease the critical axial load

corresponding to general instability.

Figure 219 shows several examples of prismatic structures often used in

civil engineering (a-c), aerospace (d-g). and shipbuilding (h) applications.
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Under uniform axial comptession buckling of these structures, which are

built up of plates, may occur in column-type modes or in local modes

involving crippling of the individuai segments. The design of such

structures is often arrived at by optimization with respect to weigl't. That

is, the weight is minimized subject to the constraint conditions that general

and local buckling shall not occur below some design load or below the

design load multiplied by a factor greater than unity to allow for initial

* -• imperfections and other unknowns. This design process usually results in

configurations for which local and general instability occur at the same

axial load. As shall be seen, the modal interaction effect to be described

here, that is the reduction in load-carrying capability due to small

imperfections, is especially severe at the design point corresponding to

simultaneous general and local instability.

Previous Work Done: Tvergaard [ 275] presents an excellent survey of the

work done on modal interaction. Bijlaard and Fisher [ 2761 established that

local buckling of the plate elements in a column reduces the critical load

corresponding to Euler-type buckli, g of the column. In 1962 Koiter and

Skaloud [ 2771 emphasized that the load-carrying capability of structures

with simultaneous local plate buckling and Euler-type column buckling may be

especially sensitive to initial imperfections. Van der Neut [ 278] proved

* Koiter's conjecture correct in a very thorough analysis of a two-flanged

column with idealized webs. Although the axially compressed simply-supported

plates from which the column shown in Fig. 220 is constructed exhibit

"*�stable post-biickling behavior, van der Neut proved that a column built up of

"such plates will experience sudden collapse usually associated with highly
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imperfection sensitive shell structures if the local plate buckling and

general column instability loads are close. Details of van der Neut's

model and realts will be presented later.

"Thompson and Lewis [ 279] determined optimum designs for van der Neut's two-

*, flange model, taking into account initial imperfections of the flanges but

- - assi.ning that the column axis remains straight. They found that with

A- growing imperfections the optimum load-carrying capacity decreases steeply

A from the value corresponding to simultaneous local and general instability

- - of the perfect column, and that for very small imperfections the optimum

design shifts away from that obtained from imposition of the simultaneous

buckling criterion to a design in which Euler-type buckling of the column

occurs at a lower load than local buckling of the flanges. Crawford and

Hedgepeth [ 280] calculated optimum designs for lattice columns and truss-

core sandwich panels with initially locally wavy members. They determined

that both structures are imperfection-sensitive, the lattice column more

*"-." so than the truss-core panel, and that the effect on optimum design obtained

with the assumption of small imperfections is opposite to that obtained with

the assumption of larger imperfections. Their major conclusion is that in

neither case is the penalty great for using the conventional practice of

arriving at an optimum design by equating local and general instability of a

* •perfect structure. (However, it is obvious that a load margin has to be

-" provided to account for initial unknown imperfections.) Maquoi and Massonnet

281] discuss the optimum design of a square box column obtained from an

"* analysis in which the effective width concept is used and collapse is assumed

to occur if the maximum stress reaches the yield stress. Graves Smith [ 282]

calculates collapse loads of box columns including the effects of welding
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residual stresses, "cylindrical" imperfections due to welding of the plates

at the corners of the box column, and initial local waviness.

Plates reinforced by axial stiffeners on one side (Fig. 219 (e-h)) are

common in civil, marine, and aerospace structural designs. rvergaard

283, 284] has used Koiter's general theory of elastic stability [ 151

to obtain asymptotic estimates of the imperfection-sensitivity of such

structures. Panels such as depicted in Fig. 219(f) are assumed to be

infinitely wide with constant spacing b between the stiffeners, are simply

supported at the two edges on which the compiessive load acts, and are free

on the unloaded edges. The eccentric stiffeners are represented as simple

beams. A panel designed so that local buckling coincides with buckling as

a wide Euler column displays a high sensitivity to initial imperfections

due to modal interaction.

For the analysis of panels for which the local and general bifurcation

buckling loads are not coincident, Tvergaard uses the Galerkin method. The

strong sensitivity to small imperfections is revealed in a continuous manner

for simultaneous and nearly simultaneous buckling. However, as the modal

deflections increase, the post-buckling equilibrium curves tend to flatten

"out so that the sensitivity to larger iaperfections is far less severe than

that predicted by the asymptotic equations derived fr.i Koiter's theory.

The solutions are used to study the optimum design of panels with various

combinations of column mode imperfections and local mode imperfections.

For certain prescribed stiffener spacings the local maxima near the design

"point corresponding to simultaneous buckling vanishes for rather small

0
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imperfection amplitudes. The maximum carrying capacity of the panel is

attained above the critical stress for locai buckling. However, from the

point of view for retaining high axial stiffness at the highest possible

load level, the optirum usually corresponds to a design with tie Euler loni

lower than the critical load associated witb local buckling of the skin

between the stringers.

A similar panel configuration has been considered by Koiter ard Pignataro

[ 285], who found a panel with a single axial bay to be very sensitive to

small initial imperfections at a design corresponding to simultaneous wide

column and skin buckling but relatively 1_ss sensitive to larger imperfections,

a result in agreement with those of Refs. '[ 283] and [ 284]. In addition

* to the single-bay panel, Koiter and Pignataro treat the important case of a

"panel continuous over several bays in the longitudinal direction. For this

multi-bay panel, the imperfection-sensitivity is found to be further decreased

because half of the bays buckle in the directicn in which the skin is being

"stretched.

Van der Neut [ 286] analyzed modal interaction for a hat-stiffened panel

.Fig. 219(g)) with use of a two-flange model similar to that used for the

- box column in Ref. [ 278]. The sensitivity of the critical load to initial

• local waviness of the plate and of the top of the hat stiffeners is greatest

"for designs for which local and wide column bifurcation buckling loads coincide.

*0 Thompson, Tulk, and Walker [ 2871 performed experiments on pin-ended eccen-

trically stiffened panels of the type shown in Fig. 219(f) made of epoxy

plastic. Local imperfections of the skin between the stringers were
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"fabricated" by heating the plastic, loading it, and then cooling it,

thus, "freezing" in an initial deformation pattern with relatively low

residual stresses. Imperfections in the form of the Euler wide column mode

were simulated by eccentric application of the end load. The sensitivity

of the critical load to initial imperfections in the form of the local as

well as the wide column buckling modes is observed to be maximum at designs

for which local and general buckling of perfect panels coincide.

Tvergaard and Needleman [ 288, 289] have investigated modal interaction

of elastic-plastic panels of the form shown in Fig. 219(f). They used

J2 flow theory with isotropic strain hardening. The panels are infinitely

wide and the stringers are modeled as simple beams. The effect of local

and global imperfections for single bay and multi-bay n-nels (multiple bays

in the axial directiop) -re investigated. They found that modal interaction

leads to imperfection--sensitivity in a single bay panel with column mode

deflections such that thc skin is being further compressed by bending. For

column mode deflections in which the skin is being stretched, the considerable

imperfection-sensitivity found by Tvergaard and Needleman is entirely due to

the material nonlinearity. This effect of material nonlinearity explains

why the multi-bay panel is not less imperfection-sensitive than the single-

bay panel, as is the cese in the elastic range [ 285].

Summary of this Section: In this section modal interaction will be illustrated

by the behavior of the two flange column studied so carefully and described

* so clearly by van der Neut [ 278]. This will be followed by an account of

modal interaction in eccentrically stiffened elastic plates, as studied
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Sexperimentally by Thompson, et al [ 287] and analytically by Tvergaard

"283, 284]. The section will close with a discussion of the effect of

"modal interaction on optimum design in which results obtained by Thompson

and Lewis [ 279], Crawford and Hedgepeth [ 280], Tvergaard [ 284] and

Byskov and Hutchinson [ 290] are presented.

Modal Interaction in an Axially Compressed Two-Flange Column

* -Van der Neut was the first to study in detail the behavior of the axially

compressed two-flange column shown in Fig. 220. The model consists of

two load carrying flanges of width b and thickness h, connected at a

distance 2c by webs which are rigid in shear and laterally but which have

* no longitudinal stiffness. Tha webs offer simple support to the flanges

In this way the flanges have boundary conditions that are easy tz take

into account analytically.

Figure 220 gives a preview of the buckliitg bchIii-ior of such a model.

Long perfect columns buckle in an Euler mode (a = aE). The behavior of
cr E

short columns is more complicated: Initially the simply supported flanges

buckle locally at a stress a = a . However, the post-buckling behnaviorcr

of long rectangular plates is stable, so that the column with crippled

flanges continues to carry additional axial load until it buckles in an

Euler mode at a flange stress a = nuE, in which n is a factor (n equals
cr

approxiately 0.4083 for simply supported long plates) that accounts for the

reduced incremental axial stiffness of the crippled flanges. Perfect

columns of such an intermediate length that nE C acr -< UE (ail at Uct =09

because of modal interaction: the crippling of the flanges causes a
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"sudden" reduction in their axial stiffness with consequent reduction of

the Euler stress from GE to no.

IL is reaso-able to suspect tha. the critical loads of columns in the inter-

-. mediate range of lengths corres'.onding to the neighborhood of aE = a would

-%% be sensitive to small initial imperfections, that is waviness, in the

.- - flanges. The amplitude of the waves would grow as the axial load is increased,

- with the result that the axial stiffness of the wavy flanges would decrease,

"* precipitously approaching the limiting value n 0.4083 times the stiffness

of the perfectly straight flanges at a load well below aE or ak and leading

Sto Euler buckling of the beam in the range nE < 0 < E Curves are drawn

in Fig. 220 corresponding to bifurcation buckling of columns with straight

0 axes but initially imperfect flanges. The quantity • is the ratio of the

amplitude of the initial flange waviness to the thickness h of the flange.

It is seen that the greatest sensitivity to initial flange imperfections

occurs for column designs such that aE = oa . Please note that even for

the column with initially imperfect flanges, the failure stresses plotted

- as solid curves in Fig. 220 correspond to bifurcation buckling in the

Euler mode, not Lo a limit load such as point E in Fig. 7(a). The bifurcation

% -point is converted to a limit point only if imperfections are introduced into

-- ' the axis of the column.

The Perfect Column: Referring to Fig. 221, it is seen that for large

slenderness of the column the Euler load KE is less than th-e fage VUc&kling

* load, K£. The stiffness of the flanges is Ebh, and the bending stiffness of

the column is El. With small slenderness, KE exceeds KZ. The flanges are in
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their postbuckled state and their stiffness under incremental compressive axial

strain Ae is nEbh. Therefore the bending stiffness under axial load is

"nEl and the column strength is K = nK. .

Figure 221(b) gives two curves, K and K versus L. Fig. 221(a) shows the

flange load P versus strain e. The slope for P > P decreases slowly with

i increasing p/p but for E/_ < 3 its variation is very slight, almost equal

- to 0.4083 which is the slope at P = P . With superimposition of prebuckling

* and bifurcation modal deflections at the load K = K ,, the compressive strain

in one flange is increased and the incremental stiffness of this flange is

nEbh. The other flange returns to the unbuckled condition, offering the

stiffness Ebh to its strain increment. Then the bending stiffness of the

column is E1 (the Engesser "double-modulus" formula). The column
2n 2E/ 1/2

is in neutral equilibrium at K when the column length is L0 = n 2- 1/

For L < L < L the equilibrium at K is stable. However for L > L > L
2 0 z. 1 0

the equilibrium is unstable; collapse occurs explosively.

The curve of Fig. 221(b) transforms into the one of Fig. 222 by replace-

-2ment of the abscissa L by L or KE/K k  This graph is composed of three

straight lines. It shows that in the range 1 < KE/K£ < 1.725, the perfect

column collapses explosively at K K . Within this KE/K -range, imperfections

reduce the buckling strength Kb to values below K2 .

Buckling with Imperfect Flanges but Straight Column Axis: The initial waviness

z of the middle surface of a flange can be developed into a series of functions

corresponding to the various buckling modes. The behavior of the flange is
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mainly governed by the term which corresponds to the mode pertaining to the

smallest buckling stress. Therefore the waviness is assumed in van der Nput's

formulation [ 2781 to be given by:

z = a cosfry/b sin irx/b ( 65)

in which the coordinates (x,y) are shown in Fig. 223. The normalized wavi-

ness parameter a is given by a = a/h.

The relationship between the axial flange load P and the compressive strain

e for this imperfect plate strip, simply supported at its edges, can be

established by use of the Ritz-Galerkin approximate solution of the non-linear

plate equation, taking the deflection in the shape of the buckling mode ( 65).

Since we are interested only in the behavior at e in the vicinity of the

perfect plate bifurcation strain e this approximation is sufficiently

accurate. Some load-strain curves are given in Fig. 223(b).

The stiffness of the flange is

S = dP/de. ( 66)

The reduction of stiffness with respect to the stiffness of the flat flange

is given by the reduction factor

- = d(P/P )/d(e/l). ( 67)

Figure 224 shows n versus P/Pk (or K/K ) for various values of a. A

0O continuous curve replaces the broken line, which corresponds to the perfect

flange.
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0, The investigation is confined to the case in which the two flanges have

equal u. Then the column axis will remain straight under the load K

"until the buckling load Kb is reached. The bending stiffness resisting an

infinitesimal deflection at the column load K is nEI. With this bending

stiffness the deflected column is in neutral equilibrium if K = KE. Therefore

-,- a load K is the buckling load Kb when

K/K P/P K
9 = E. 68)

. (K/K ) T (P/P ) K

KE is a measure of the column length. Then Eq. ( 68) gives the relation

between column length L and buckling load K b as functions of a (q being a

--function of a). Evaluation of Eq. ( 68) by means of the 'ata contained in

- Fig. 224 yields the relation between Kb/K£ and %/K2. for various values of

a (Fig. 225).

"The broken line for a 0 in Fig. 225 represen:s the degeneration of the

"smooth curves for a #0. It appears that Kb < K2  when KE/Ki < 2. The re-

"duction in strength because of a is rather important in the vicinity of

IE/K£ = 1: for a = 0.0125 it is 10%; for a = 0.05 it is 17%; and for a = 0.2

it is 30%. This confirms the conjecture of imperfe -on sensitivity on the

unstable part of the perfect-column-curve (Figs. 221 and 222). The signi-

ficant imperfection sensitivity is a direct result of the very large change in

effective stiffness of the slightly imperfect flanges (small a) for loads

below K2 (Fig. 224).

Stability of Equilibrium at the Bifurcation Load, Kb: In Refs. [ 278] and

29]] van der Neut derives the slopes of the initial post-buckling load-
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deflection curves corresponding to deflections of the column axis in the form

. shown in Fig. 226(a). The formulation is based on Koiter's stability

- theory [ 15]. Figure 226(b) shows tangents to post-buckling load-end-

shortening curves at bifurcation points Kb for columns with various KE/K,

and flange imperfections a. The dashed curves correspond to the columns

with perfect flanges, and the origins for each curve with a > 0.0125 have

been shifted upward to permit display of all the data in one frame. The

abrupt change in slope of each of the dashed curves at c/E£ 1.0 corresponds

"to K/K = 1.0. Each short line segment represents the tangent to the post-

bifurcation equilibrium curve corresponding to a column with a particular

IC/K . The value of KE/K can be determined by reading on the K/K axis

the point of intersection of the post-bifurcation tangent with the approxi-

mately bilinear solid curve with which it is associated, identifying K with

the bifurcation load K. in Fig. 225, and reading KE/Kt from Fig. 225.

It is seen that for small flange waviness a and 0.7 < e/c£ < 1.0, the

post-bifurcation curves have negative slopes, indicating that the bifurcation

loads K associated with them are sensitive to initial imperfections e

in the axis of the column. Thus, the two flange columns with KE/KY less than

2 will fail below the load Kb/K9 = 1.0 because of two effects: Unavoidable

waviness a in the flanges of the form givcTn Ly Eq. ( 65) will reduce the

bifurcation point Kb from the dashed curve as shown in Fig. 225, and

unavoidable waviness e /c in the column axis will further reduce the load-0

carrying capability by conversion of the bifurcation point K to a somewhat
0b

lower limit point Kf as shown in Fig. 227. Notice from Fig. 226 that the

instability associated with bifurcation in the column mode almost disappears

for a > 0.2.
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.* Buckling of Columns with Imperfect Flanges and Imperfect Axes: van der Neut

used the Ritz-Galerkin method to calculate limit loads Kf of the two-flange

columns with both imperfect flanges and imrperfect axes. Results of the

numerical evaluation are shown in Fig. 228, which gives the strength
" Kf eo

reduction 1 - as a function of 0 for two values of _KE/K. Curves
Kb asafnto f -K/

for equal KE/K and different a almost coincide, so that or.e single curve

"sufficiently represents the range 0 < a < 0.1. It should be recalled, however,

that the effect of a on K/K is significant (see Fig. 225). The column

axis eccentricity associated with the maximum reduction in load-carrying

capacity, (eo/c) 1 depends very strongly on a and increases with increasing

a. The approximate positions of (e 0 /c) 1 are indicated in Figs. 227 and

228.

The validity of the results depends on the condition that the Taylor series

expansion of the flange load P as a function of column end shortening E

used by van der Neut [ 278] represents sufficiently accurately the actual

P - c-curve. This condition appears not to be fulfilled when the flange

"loads P and P of the bent column (See Fig. 226(a)) differ from -Kf by

more than 15 to 20%. Therefore the validity of the curves is restricted to

small values of e /c not exceeding 2%. However, the stiffness dP/dE,
0

, corresponding to the Taylor-expapsion turns out to be smaller than the actual

stiffness. Therefore eo/C is smaller than that predicted by the computation.

Below the curves a hatched region has been indicated, representing the

uncertainty.

Provided the stresses remain within the elastic region, imperfection of the

column axis appears to have a minor effect upon the load catrying capacity;

it will maximally be of the order of 10%. The main reduction stems from

initial waviness of the flanges.
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Modal Interaction in Axially Compressed, Eccentrically Stiffened Panels

This problem, studied by Tvergaard [ 283, 284], Koiter and Pignataro [ 285],

van der Neut [ 286], and Thompson, Tulk, and Walker [ 287] for elastic panels

and Tvergaard and Needleman [ 288, 289] for elastic-plastic panels, is

* .. analogous to the two-flange column problem. The interaction effect studied by

A- tLose researchers involves the Euler wide column mode of the panel, the

unloaded edges of which are unsupported, and the local buckling of the sheet

between two adjacent stringers. Figure 229 gives the geom, try and coordinate

system of such a panel, which in the analysis of [ 283] is considered to be

infinitely wide.

The curves displayed in Fig. 230 are analogous to those in Fig. 220 for

" ,.the two-flange column. P is the load corresponding to bifurcation buck.ing
L

"of the skin and L is the length for which local and Euler wide column
cr

buckling occur at the same load. (In the work of Tvergaard and others it is

tacitly assumed that the Euler wide column mode is the lowest general

instability type buckling mode.) It is seen from Fig. 230 that the

maximum sensitivity of the failure load PM to initial imperfections occurs for

designs near the simultaneous buckling point, PE P The curve labeled

PE* is analogous to that labeled naE in Fig. 220 and that labeled n7i in

Fig. 221. It corresponds to buckling of a wide eccentrically stiffened

panel in which the effective stiffness of the skin has been reduced by local

buckles.

Figures 231 and 232 show how the carrying capacity of a particular

eccentrically stiffened panel is reduced by local and Euler-type imperfections
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* of various amplitudes. The results in Fig. 231, for which P P are
E L

"obtained from an asymptotic expansion in the neighborhood of the bifurcation

point of the perfect panel, according to Koiter's theory for simultaneous

buckling modes [ 15]. The results shown in Fig. 231 indicate that the

panel is more sensitive to imperfections in the shape of the local buckling

mode than to imperfections in the shape of the Euler buckling mode.

Fig. 232 shows test results for a stiffened panel with slender stringers

that also participate in the buckling mode when W /h < 0. (Initial Euler
0

wide-column imperfection W0 such that bending induces tension in the skin,

compression in the stringers). The curves are not symmetrical about

W 0/h = 0 because the panel configuration is not symmetrical with respect

Sto inward or outward buckling modal displacements.

-"vergaard [ 284] extended the analysis of [ 283] to study the nonlinear

post-buckling behavior of eccentrically stiffened panels corresponding to

a range for which the initial post-buckling asymptotic analysis method of

Koiter is not valid. He used the Galerkin method to calculate post-buckling

stiffness and load-carrying capability of panels such as depicted in

Fig. 229.

Some examples of the relationship between load and modal deflections found

by 1.-rgaard are shown in Fig. 233. The solid curves give the behaviour

of a perfect panel, and the dashed curves show the behaviour of a panel with

* small initial imperfections. X is the axial load parameter ýnd •i and C2

are Euler mode and local mode imperfection amplitudes, respectively. The
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,* panel corresponding to Fig. .233(a) has coincident buckling loads, while

Euler-type buckling is critical in Fig. 233(b) and local buckling is

critical in Fig. 233(c). In all three cases the initial post-buckling

behaviour predicted by the Galerkin method agrees with that calculated by

*! application of Koiter's general theory [ 15]. However, as the modal deflections

-].[- increase, the equilibrium curves tend to flatten out. For example, in the

simultaneous buckling c~c- of Fig. 233(a), the sensitivity to very small

imperfections predicted with the Galerkin method is as strong as that pre-

S/'dicted by the asymptotic solution, but for imperfections so large that the

limit point occurs under the flat part of the solid curve, a further increase

of the imperfections results in practically no additional reduction of the

limit load X*.

Figure 234 represents qualitative experimental confirmation of Tvergaard's

results. The asymptotes correspond to the general bifurcation buckling load

PE* for the panel with the reduced skin stiffness (See Fig. 230).

Optimization of Imperfect Cclumns and Panels in which Modal Interaction Occurs

The conventional criterion of optimization for thin elastic structures is that

overall and local buckling loads should coincide. The validity of this so-

* called "naive" approach was originally questioned by Koiter and Skaloud

277] on the grounds that simultaneous buckling might give rise to severe

* -imperfection sensitivity which could modify or destroy the apparent optimum.

- Columns: Figures 235- 238 pertain to the optimum design of imperfect

columns in which simultaneous local and general instability might occur.
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Figures 235- 237 pertain to the two-flange column studied by van der Neut

278] and just discussed in detail. All designs corresponding to various

b in Fig. 235 and various x = KE/K• in Figs. 236 and 237 have the same

weight. The point ,LL DL SkiUUU 1 ...1IJ ib illustrated by

Fig. 235: An optimum design arrived at by the bifurcation buckling analysis

ot a perfect structure, dimensioned such that aE = oa, corresponds to some

dimension b = b However, the imperfect structure has a maximum load-carrying

capability at a different design point, b < bA. Thompson and Lewis [ 279]

found that for van der Neut's two-flange column the optimum design shifts to

the left (Fig. 237) for small flange imperfections and then back to the

right for larger flange imperfections. The implication is that fairly well

made box columns should have dimensions such that the Euler load is a bit

less than the local flange buckling load.

Crawford and Hedgepeth [ 280] came to similar conclusions for axially com-

pressed lattice columns and truss-core stiffened simply-supported panels

(Figs. 238, 239), but in comparing the critical loads of the structures

obtained from the "naive" approach with those of the same weight obtained

"from the "sophisticated" approach, they determined that very little strength

penalty results from use of the "naive" E = a criterion for the perfect

structures (Fig. 240). (However, they urge the designer to be aware of the

increased imperfection sensitivity resulting from optimization subject to

the constraint aE =a, and consequently to provide adequate load margins

"at the "naive" optimum!)

Panels: Tvergaard [ 284] investigated the effect of modal interaction on

the optimum design of eccentrically stiffened panels of the type illustrated
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in Fig. 229. Definition of an optimally designed panel involves many

parameters, such as the plate thickness, eccentricity of the stiffeners,

spacing between the stiffeners and the shape of the stiffeners. In Tvergaard's

treatment the number of parameters is restricted because the goal of his

investigation is to determine whether a design corresponding to simultaneousK. Euler wide column and local skin buckling has the highest carrying capacity.

Thus, the distance "a" between the simple supports, the spacing b between

the stiffeners, the eccentricity e of the stiffeners and the common material

to be used in the whole panel are prescribed. The stiffeners, attached to

one side of the plate, are assumed to have rectangular cross-sections.

For a panel built of a given amount of mýerial per unit width, i.e. a

panel with a given value of h = h + A /b, where A is the stringer cross
0 s S

section area, the maximum carrying capacity or limit load X* can be calculated

as a function of the imperfection amplitudes 1l and •2 in the Euler and

local modes, respectively, and the parameter h/h which specifies the ratio0

of the amount of material in the skin to that in the whole panel. In the

following, X denotes the critical load paramzer in the case where the
0

stiffeners disappear completely (h/h = 1).0

Tvergaard considers a panel with a given weight, the geometry of which is

00-. specified by a/b = 4, e/b = .05 and h /b = .0128. In Fig. 241 the maximum

carrying capacities are plotted vs. h/h for different amounts of imperfections
0

in which the wide column modal imperfection E1 equals 2" (Note that the

imperfections are normalized by ho, so that imperfections corresponding to

different points on a curve with constant • are equal relative to the

constant measure h, but not relative to the current plate thickness).
0
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O Figure 241 also shows the point N at which the initial post-buckling

behaviour of the perfect structure changes from stable to un -T'le according

to the Koiter theory. The X*-curve corresponding to very sma,. imperfections

Lntersects the X(2) curve iust below thiE point.
c

Figuro 241 shows that if the panel is aoigned against the classical

critical buckling stress, the optimum (minimun weight for a given axial load

or maximum critical load for a given weight) is clearly the one corresponding

to coincident buckling loads. However, Fig. 241 demonstrates that the

"carrying capacity in the vicinity of this design diminishes rapidly as small

imperfecti- 9 are introducea The local maximum of the X* curves vanishes

when the noý _d imperfection amplitudes xceed a value of about 0.03. It

_ is also obvious from Fig. 241 that the highest carrying capacities of the

.mperfect panels are predicted in the range where the buckling stress X
c

has been exceeded. Here, the collapse load X* becomes even slightly larger

than the critical stress of the perfect structure at the design point

corresponding to simultaneous buckling. In this range, however, the

limit load X corresponds to quite large modal deflections (Fig. 233(c)),

so that in practice plastic deformations or brittle fracture may often

reduce the maximum load predicted by the elastic theory.

• Tvergaard also treats an example in which the spacing b of the stiffeners

is halved without cha-iges in the length "a" between the supports, the

eccentricity e of the stiffeners, or the amount of material per unit width.

- In this case, the panel is specified by a/b = 8, e/b = .1 and h b = .0256.
0

Results are displayed in Fig. 242. For this panel the design point
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[ :corresponding to simultaneous buckling of the perfect panel occurs at such a

small value of h/h that further enlargement of the stiffeners at the

expense of plate thickness is of Practically no advantage with respect to

Xl as can be seen from the data at the lowest values of h/h in Fig. 242.c o

Figure 242 demonstrates that the larger the amplitude of the imperfections,

the higher will be the value of h/h at which the maxima of the X* curves
0

occur. Tvergaard proved that local mode imperfections of a given amplitude are

more serious than Euler-type imperfections of the same amplitude. The

carrying capacities X* predicted in the range where A* exceeds X( to the
c

left of the point N) are smaller than those in the remaining range. If imper-

fections can be kept small, the optimum design will correspond to values of

2)X(A slightly higher than unity. For larger imperfections, this valuec c

increases to about two, depending on the stiffness required.

Apart from a high limit load X*, the stiffness retained in the panel at a

given load level X may be of considerable interest. Tvergaard [ 284]

"defines a normalized stiffness parameter

S = (dX/dA)/(dX/dA) 0  (69)

in which X is the applied load, A is the end shortening, and the denominator

represents the prebuckling stiffness of the perfect structure. For a perfect

panel the stiffness S defined by Eq. ( 69) is equal to unity in the entire

range belcw the classical buckling load. In Fig. 243 the stiffness S is

plotted for two different imperfection magnitudes. It is seen that even for

small imperfections the stiffness decreases significantly at relatively low

loads in the range to the left of the figure where X* exceeds X (2)soc

that this range is not advantageous from the point of view of stiffness.
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Also, for larger imperfections a design with X(2 )/x(i) somewhat above unity.• C C

is preferable with respect to retention of a high stiffness in the panel.

Tvergaard [ 284] draws the following conclusions from his study of the

optimum design of axially compressed imperfect elastic, eccentrically

stiffened panels: "An analysis of stiffened panels made of a given amount

of material per unit width shows that in some cases the design with the

highest carrying capacity is one in which the limit load is attained beyond

the critical stress for local buckling. However, the stiffness properties are

relatively poor for such designs. From the point of view of retaining a high

* stiffness at the highest possible load level, the best design is usually one

in which the critical stress for Euler-type buckling is smaller than that

for local buckling. In some cases, the optimum design has a local buckling stress

•- that is more than twice the Euler buckling stress. Thus, the optimum design from

.* the point of view of post-buckling behavior often differs significantly from

the design with two simultaneous buckling stresses." [ 284]

Axially Stiffened Cylindrical Shells: In all of the elastic modal interaction

problems involving columns and panels, each of the modes acting alone would

result in behavior that is not sensitive to initial imperfections. The modal

interaction problem for axially compressed, axially stiffened elastic

0 cylindrical shells, studied by Byskov and Hutchinson [ 290], differs signifi-

cantly in that the buckling load corresponding to the general instability mode

is always sensitive to initial imperfections and that corresponding to local

• . buckling of the skin between adjacent stringers may or may not be sensitive

to local imperfections, depending on the stringer spacing. The effect of
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interaction between local and general instability is to increase the sensi-

tivity of the critical load to initial imperfections.

Byskov and Hutchinson [ 290] solve the problem with use of an asymptotic

method similar to Koiter's [ 15] that provides uniformly valid results whether

the modes are simultaneous, nearly simultaneous, or well separated. For the

perfect shell, the optimum design has simultaneous overall and local

buckling loads. Overall buckling loads and mode shapes are calculated from

a theory in which the stringers are smeared out and the torsional rigidity

of the stringers is neglected. Local buckling is also calculated on the basis

"-. of neglect of ..he torsional stiffness of the stringers. The stringers are

"considered to be stocky enough that they do not cripple. Initial imperfections

have the form of a sum of i bifurcation buckling modes corresponding to the

lowest i eigenvalues of the perfect structure.

Results from Byskov and Hutchinson's analysis are presented in Figs. 244(a-e).

These figures are analogous to Figs. 241- 243 in that all points on the

abscissa of each figure correspond to a given amount of material, and the

ordinate represents the normalized maximum axial load A = P/P e The quantity

P is the classical buckling load of a long unstiffened cylindrical shell withe

the same radius R but with thickness t corresponding to the same total cross-e

sectional area of the stiffened shell:

2
t t + A /b; Pe 2TrR[O.6Et /R] ( 70)
e shell s e e

in which A is the cross section area of a stringer ands

b = 2 7R/NS ( 71)

N2
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where N is the number of stringers. As in Figs. 233 and 241- 242,
s t

represents the critical bifurcation load corresponding to general instability

Sand )' the critical bifurcation load corresponding to local instability of

the perfect shell. The numbers in parentheses represent amplitudes of the

(general, local) initiai imperfections normalized by t. Figures 244(a-d)

correspond to cylinders with rectangular stringers and Fig. 244(e) to a

cylinder with T-shaped stringers.

In each example, the total amount of material, the skin thickness t, the radius-

thickness ratio R/t, and the radius-length ratio R/L are held constant. The

relative amount of stiffener material,

a A /bt (72)s s

is therefore fixed, so that A varies inversely as the number of stringers

N . In the case of Figs. 244(a-d) the stiffener thickness t is held
8 5

constant, so that the stiffener height h varies inversely with N . In the

".-. case of Fig. 244(e) the height and thickness of the web and flange are

equal and vary in proportion.

From their results Byskov and Hutchinson conclude that "the feature common

to each example studied is the relatively weak dependence of X (the
5

. maximum load-carrying capacity) on N at realistic imperfection levels. As

reported in studies of other structures, design for mode coincidence (X1 =X

"".-. of the perfect structure does not appear to lead to a design that would be

far from optimum. In fact, the examples studied here suggest that the

designer has considerable latitude in this regard, although one must not lose
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"F.•] sight of the fact that the imperfection sensitivity is greater for designs with

"coincident modes. In all cases, except that in Fig. 244(d), the optimum in

the presence of imperfections tends to shift toward a design with >
2 1i

"Furthermore, when the local mode of the perfect structure is unstable at

the design of coincidence, the presence of imperfections tends to shift the

optimum toward the regime in which the local mode is stable."

Transverse Shear Deformation Effects

Plate and shell theories represent means to simplify the general analysis of

structures by the introduction of assumptions that make the displacements

functions of two rather than three spatial coordinates, as discussed in

Volume 2. Usually this reduction is achieved by use of the assumptions:

o Normals to the reference surface remain straight during deformation

o Normals to the reference surface remain normal after deformation

o The transverse normal stress is negligibly small

The assumption that the normals remain normal to the deformed surface means that

transverse shear deformation can be neglected. Such an assumption is certainly

acceptable if the shell is sufficiently thin. In the following, such theoriec

are referred to as first order theories. A second order theory may, for

example, be obtaired if the first of the three assumptions is retained but the

second discarded. Such theories have been presented by Reissner [ 292] and

Mindlin [ 293]. Higher order theories can be obtained if also the first

assumption is discarded, but it is questionable whether use of such theorips

have any advantages in comparison to a complete three-dimensional analysis.
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*O Laminated Composite Materials

The argument for retention of the effect of transverse shear deformations in

analytical models of plate and shell structures made of laminated composite

materials is much stronger for geometries typical of practical designs than

it is for isotropic metals because the transverse shear moduli GI3 and G23

(Fig. 245) are usually one to two orders of magnitude smaller than the

longitudinal modulus, E1 . (In keeping with generally accepted nomenclature, we

will refer to longitLinal and transverse elastic moduli, E and E2 , as the

moduli in the plane of the lamina parallel and normal to the fiber d,.rection.

The inplane shear modulus, GI2 , is distinguished from the two transverse

shear moduli, G1 3 and G2 3 . The modulus, G13, corresponding to shear along

. the fibers (Fig. 245) is generally somewhat larger than G2 3 .) Typical

values for a lamina may be of the order E I/E 20, G 0.6 E and G
1 2 '13 2 23

- . 0.4 E Since the transverse shear moduli for a lamina are small in comparison

to the longitudinal elastic modulus, the transverse shear deformations

must have a bigger effect on the buckling load of composites than it has on

"metallic plates or shells. That is, the composite shells must be thinner

relative to inplane dimensions or wavelengths before the transverse shear

effect can be omitted.

* Since most generally available computer programs presently do not include

the effects of transverse shear, it is important to the designer to know

.-0 the limits of the first order theory. For an isotropic plate, it can be

- seen from Figure 246 that b/h for a simply supported plate may be close

"to 10 before the error exceeds 5%. In order to obtain similar accuracy for
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composite material, we must restrict the first order theory to even thinner

plates. Figure 247 indicates that for a material with E /E2 30, the
1 2 ~ ta

transverse shear effects should be included if the width-to-thickness ratio

is less than about 20. It should be noted that theresults of Refs. [ 294]

and [ 295] apply to plates with simply supported edges. With respect to

buckling of plates, the effect of clamping the edges is ebc-entially equiva-

lent to reduction of the inplane dimensions by a factor of two. It might be

surmised therefore, that for clamped plates the transverse shear effect

should be accounted for if b/h < 40. Similarly, it appears that the opposite

argument applies for a flange with one free edge: the transverse shear effect

can probably be omitted if b/h > 10. More numerical comparisons are needed for

guidance in design. In particular, if composites are used at elevated hygro-

thermal conditions, E/E2 E/G13 and El/G23 may be very large, and the

transverse shear deformation effect increased.

Sandwich wall construction may be thought of as a class of laminated composite

"* shell wall which is weaker in transverse shear stiffness than ordinary iso-

tropic or orthotropic constru tion. Figure 248 shows a predicted collapse

mode of an actual part of a space vehicle. The cone is a ring-stiffened

sandwich structure supported by a monocoque cylindrical skirt. The sandwich

"construction is made of aluminum honeycomb core with composite face sheets.

* The nonlinear collapse load of this structure *as investigated with the use

of two finite element models and the NEPSAP computer program [ 297]: In model

(a) the sandwich core and facings are represented as multilavered composite

* elements with the effect of transverse shear deformation of the honeycomb
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core neglected. To study the extent of this effect, model (b) was constructed.

"' In this model the sandwich construction was modeled "exactly" with use of

Sthree-dimensional orthotropic solid elements for the core and composite shell

eleients fur the facAngs. The cone is subjected to axial and flexural loadings

- -.- which were applied as equivalent point loads around the top circumference.

Because of planar symmetry, only half the structure (180') was considered for

both models.

"The results of this study are shown in Figs. 248(a) and (b). Fig-are 248(a)

shows the collapse mode, and Fig. 248(b) gives the load-deflection

characteristics of the two models. Collapse occurs at a load factor of 4.0

for model (a) and 2.8 for model (b), indicating a 30% drop in the predicted

* value of collapse load as a result of shear deformation in the core.

"* 2
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Section 8

IMPERFECTION SENSITIVITY

Introduction

The emphasis in previous sections of this volume has been on buckling either

as a nonlinear collapse phenomenon or as a bifurcation phenomenon, as shown in

Fig. 7. It has been implied that the load at which collapse occurs, X in

Fig. 7(a), is obtained from a nonlinear analysis with use of a computer

program for general shells such as STAGS 1 481 or a computer program for

shells of revolution such as BOSOR [ 47]. The bifurcation load, X in

Fig. 7(a), has been identified, by implication at least, with loss of

O* stability of the structure. Many examples have been given involving comparisons

J., between tests and predictions of bifurcation buckling loads and mode shapes for

elastic and elastic-plastic shells of revolution under ur.iform and nonuniform

loads, including and neglecting nonlinear prebuckling effects. The effect of

imperfections in the structure has been to cause discrepancies between test

and bifurcation buckling theory, such as demonstrated in the extreme cases

of the cylindrical shell under axial compression (Fig. 19) and the spherical

shell under external pressure (Fig. 30). With the exception of the examples

in the previous chapter involving modal interaction in axially compressed

columns and stiffened panels, the post-bifairczLe" states of structures have

not been considered here explicit±y in determinatioas of their load-carrying

capacities.

Summary

This se(cion opens withi a very brief account of Koiter's asymptotic theory [15]

for the initial post-buckling behavior of perfect and imperfect structures.
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[Ii; Formulas are given for load-buckling-modal-deflec~ion curves for the various types

of post-buckling behavior exhibited in Fig. 8, and a survey of work on imper-

fection sensitivity of elastic-plastic shalls is given. Following a short section

on qualitative guidelines for the engineer with regard to imperfection sensitivity,

a rather detailed treatment and survey of work dene on axially compressed monocoque

and stiffened cylindrical shells appears. Details of a derivation of parameters

N governing imperfection sensitivity are presented for a case in which stiffeners

are present and nonlinear prebuckling effects are included. Asymptotic and general

nonlinear approaches to the problem are discussed. This is followed by numnerical

•-# -results for cylindrical shells with sinusoidal axisymmetric imperfections, localized

"-, inperfections, and random imperfections. Other results from the literature are given

for axially compressed cylinders with i arnal pressure, cylindrical panels, oval

- cylindrical shells, and stiffened and laminated composite cylindrical shells. The

section on axially compressed cylinders closes with an outline of a design method

valid for a large class of designs which is based on a less conservative approach

than those commonly taken and which past experience demonstrates is reasonably

safe-.

The section continues with a presentation of data relative to monocoque and

stiffened cylindrical shells uncer hydrostatic pressure and torsion and spherical
,."

shells and shallow spherical caps under external pressure and concentrated loads.

3 A derivation of the asymptotic post-buckling theory is presented here for the

case in which there exist iultipie bifurcation buckling modes at the critical

lood, X . The theory is applied to a shallow section of a complete spherical
C

"* sbell. The chapter closes with discussions of limitations of the asymptotic

imperfection sensitivity theory, bifurcation buckling with stable post-buckling

'c. behavior, and the Southwell method.

•2'4
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* Asymptotic Post Buckling Theory - A Summary

Vb.

Koiter [ 15, 2981 was the first to develop a theory which provides the most

rational explanation of the large discrepancy between test and theory for the

buckling of axially compressed cylindrical shells and externally pressurized

spherical shells: the early collapse is due to small, unavoidable geometrical

0 imperfections. Excellent reviews of Koiter's theory and of the many applications

of it to buckling of monocoque and stiffened elastic and elastic-plastic shells

are given by Hutchinson and Koiter [ 6], Tvergaard [ 7], and Budiansky and

Hutchinson [ 299]. The theory itself is reiterated in some detail by Budiansky

3001, Seide [ 301], and Masur [ 302] and extended to dynamic buckling by

*.- Budiansky and Hutchinson [ 303] and Budiansky [ 304]. Many of the numerous

* applications of the theory to static buckling of shells of revolution reviewed

in Refs. [ 6] and [ 305] refer to the presentation of a simplified form of

the Koiter theory for static analysis given in Refs. 1 303] and [ 304].

Summaries of the main features of Koiter's theory appear in [ 4] and [ 7].

Essentially, the purposes of Koiter's theo..y are to:

(1) Determine the stability of equilibrium at the lowest bifurcation point

on the equilibrium path, and

(2) To ascertain the sensitivity of the maximum load-carrying capacity

of the structure to initial geometric imperfections.

In the classical stability analysis of conservative systems stable equilibrium

is often illustrated by a heavy ball resting at the lowest point on a wavy

surface. Any small displacement of the ball requires an input of energy to

move it against the force of gravity. Removal of the small force giving rise

to this small displacement causes the ball to return to its original position
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at the lowest point on the surface. Unstable equilibrium is exemplified by the

ball resting on a peak. The slightest disturbance will cause it to roll to a

new equilibrium position with less potential energy at some point locaten a

finite, perhaps a large distance, from this peak. Neutral equilibrium is

illustrated by the ball at rest on a flat surface. The small disturbance will

again cause the ball to move to some new, non-adjacent equilibrium position,

but with no change in its potential energy.

A classical bifurcation buckling analysis represents a search for the load

at which the equilibrium of a structure ceases to be stable and becomes

0• neutral; it does not reveal information about the stability of the structure.

Suppose that a structure is in equilibrium at some load smaller than the

lowest bifurcation load, (and furthermore suppose that we are only concerned

here with bifurcation buckling, not nonlinear collapse). Any small additional

. displacement field which satisfies the requirements of continuity (compatibility)

* . and geometric boundary conditions (kinematicilly admissible displacement field),

will cause the energy of the system (structuru plus potential energy of loads)

to increase. Thus. the structure is in a state of stable cquilibrium analogous

to the ball at the lowest point of the wavy surface. At a higher load corres-

ponding to the bifurcation point, the additional energy of the system due to

the small disturbance does not change: the structure is in a state of neutral

equilibrium analogous to the ball on the flat surface; the equilibrium state

is not unique in a small neighborhood of the prebuckling state. At loads

above the lowest bifurcation point, equilibrium on the fundamental (prebifurcation)

load-deflection path is unstable, analogous to the ball on the peak.
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In order to learn whether or not the structure is stable at the bifurcation

point, it is necessary to determine the characteristics of the post-bifurcation

"path in load-generalized-displacement space or in load-postbuckling-modal-

deflection space in the neighborhood of the bifurcation point. Typical paths

are displayed in Fig. 8. The stability of equilibrium at the bifurcation

point is governed by third and fourth order terms in the energy functional

expressed as a series expansion of the incremental displacement represented

by the difference of the displacement field corresponding to the fundamental

state at the bifurcation point and that corresponding to a state on the post-

bifurcation equilibrium path close by. The first-order terms of the energy

thus expressed cancel because the fundamental state at the bifurcation point

is an equilibrium state; the second-order terms likewise cancel because the

bifurcation point represents a state of neutral equilibrium. The shape of

the post-bifurcation load-deflection curve in the neighborhood of the

bifurcation point is therefore governed by the third-order terms (Fig. 8b),

or if these vanish, by the fourth-order terms (Fig. 8c,d) in the expression

for incremental energy.

Elastic Post-Bifurcation Analysis

At a bifurcation load X where the buckling mode is unique, Koiter's generalc

elastic post-buckling theory [ 15, 298] leads to an asymptotically exact

expansion for the load parameter X in terms of the normalized bifurcation

buckling modal amplitude, wb:

02

X/Xc 1 + a wb + b wb (+ 73)
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Three types of elastic initial post-buckling behavior are shown in Fig. 249.

Solid curves show the behavior of perfect structures and dotted curves the be-

havior of imperfect structures with imperfections in the form of the unique

critical bifurcation buckling mode. The ultimate load-carrying capabilities

of the structures represented by Figs. 249(a) and (b) are sensitive to initial

"- - imperfections while that represented by Fig. 249(c) is not. For the case

"249(a), which is asymmetric with respect to the sign of the buckling modal

amplitude wb (a # o), a negative normalized imperfection amplitude wi converts
b "imp

bifurcation buckling into limit-point or "snap" buckling at a reduced load X
s

given by Koiter's general theory as

".•" 1/2

"" /IX 1 -2 (-p a wit) ( 74)

"in which p is a constant that depends on the imperfection shape. For the

symmetric case 249(b) "a" in Eq. ( 73) is zero, b < 0, and the limit load

of the imperfect structure is

X AI 1-3 (-b/4)1 /3 w 2/3 75)
s c imp

Many applications of Eq. ( 74) and especially Eq. ( 75) appear in the

literature. Several examples will be shown later in which the parameter b

* in Eq. ( 75) is plotted as a function of shell geometrical parameters or

" • loading. Figure .250 illustrates the relati hip of the coefficient b in

Eqs. ( 73) and ( 75) to the imperfection sensitivity for a system such as a

* shell of revolution, for which the lowest bifurcation buckling mode is unique

"and the initial post-buckling behavior is symmetiic with respect to the sign

of the post-buckling displacement field and unstable. The initial post-
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buckling load P of the perfect structure follows the solid curve showi in

. Fig. 250(a). The quantity 6 is the amplitude of the postbuckling displace-

ment field, which is assumed to be in the form of the unique buckling mode.

The quantity t is the shell thickness. The dashed curve pertains to an

-. imperfect shell. The value of b depends on details of the geometry and

loading. Buckling loads are sensitive to imperfections if b is negative

and insensitive to Imperfections if b is positive. As shown in Fig. 250(b),

Smore negative values of b are associated with greater sensitivity of the

critical load Ps to initial geometric imperfections 6. Curves for the spherical

shell under uniform external pressure and the cylindrical shell under uniform

-. axial compression are shown in order to emphasize the extreme nature of imper-

fection sensitivity in these two case- The curves are dashed because they

"- are not derived from Eq. ( 75) as explained next.

There are important examples in which the lowest bifurcation point is asso-

ciated with several buckling modes or in which there exists a cluster of

bifurcation loads just above the criti-al load. The cylindrical shell under

axial compression is an example of the former and the spherical shell under

external pressure is an example of the latter. Structures optimized such that

local and general instability occur at the same :oad provide another practical

example. For cases in which there exist several simultaneous buckling modes

Eq. ( 73) is replaced by N asymptotic equations for the load parameter X in

terms of the buckling modal parameters wbl, w b2' . WbN of the form

- w w . +B w w w + (76)i Wbi Aijk Wbj Wbk ijkl Wbj bk blc
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in which the summation convention (from one t N) is implied for repeated

indices. Koiter's general theory yields asymptotic estimates of the imper-

fection sensitivity X /X in the case of elastic buckling. Due to izodals c

interaction the effect of initial geomztric imperfections is usually severe,

as demonstrated in the last chapter for built-up axially COoDressed columns

and panels and by Lhe dashed curves in Fig. 250(b).

If the bifurcation buckling modes are nearly coincident, as they are for uni-

formly externally pressurized spherical shells, the imperfection sensitivity

is also characterized by modal interaction, even though the initial post-

buckling behavior of the perfect structure in the immediate neighborhood of

- the bifurcation point is governed by the expression ( 73) for the single

"mode case [ 306].

Elastic-Plastic Post-Bifurcation Analysis

Practically all of :-he development and application of asymptotic post-

buckling theory including the effect of plasticity has been done in the last

decade by Hutchinson, Tvergaard, Needleman and their coworkers [ 7, 8,

"299, 307 - 317]. Hutchinson gives a summary in [ .307] and Tvergaard

* in [ 7]. The theory represents extensions to the general theory of

uniqueness and bifurcation in elastic-plastic solids derived by Hill in

1958-1959 [ 308, 309] and the general post-buckling tLeory developed by

* Koiter for elastic structures in 1945 [ 15, 298].

2
".1*
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Figures 251(a) and (b) are analogous to Figs. 249(a) and (b). Note that

"- bifurcation in the plastic range occurs under increasing load, so that unlike

"the elastic cases, the maximum load-carrying capability of perfect structures

is slightly above the bifurcation load X and occurs at amplitudes wb for
c-b

which a finite amount of material has experienced strain reversal.

Perfect Elastic-Plastic Structures. For the plastic range an asymptotic theory

of initial post-bifurcation behavior of perfect structures was developed by

Hutchinson [ 310], [ 307]. An asymptotic expansion is obtained for the

initial post-bifurcation load in terms of the bifurcation modal amplitude wb,

as in Koiter's elastic post-buckling theory. In the plastic range the treat-

- ment is complicated by the phenomenon of elastic unloading, which starts at

-• bifurcation and spreads into the material as the buckling modal Amplitude

o* increases. When the buckling mode is unique the asymptotically exact expression

for the load parameter X in terms of the normalized buckling modal amplitude

wb is

X/Ac 1 + XIb + X2 b+ 77)

c 'b 2 bI'

with 0 < < 1. The value of B depends on the shape of the unloading

regions [ 307]. The constant X is positive since bifurcation takes place

under increasing load. Its value is determined by the requirement that plastic

loading takes place. The coefficient X is negative, so that the truncated

expansion ( 77) can be used to estimate the maximum support load of the perfect

structure, which is slightly above the critical bifurcation load. An extension

of the asymptotic expansion ( 77) to cases of several coincident buckling modes

has not been carried out. The asymptotic theory for plastic post-bifurcation

of perfect structures has been applied by Tvergaard and Needleman to study the
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behavior of structures with symmetric [ 311] and asymmetric post-bifurcation

behavior [ 288, 289, 312].

"Imperfect Elastic-Plastic Structures. In 1972 Hutchinson [ 313] reported

the results of a numerical axisymmetric plastic buckling analysis of perfect

and imperfect spherical shells loaded by uniform external pressure. The shell

material is characterized by a Ramberg-Osgood stress-strain relaLion

S/E = a/a + a (a•/a)n ( 78)
.. y yy

with a = 0.1 and n = 6. The geometrical parameter of the sphere at bifurcation is

[3 (- 2 -1/2 y
(1 v t/(s R) = 3 ( 79)

0y

From Fig. 252 it is seen that corresponding to this value 3 the bifurcation

stress of the perfect shell is about 1.5 times the effective yield stress a

and the flow theory prediction is about 7% above the prediction )btained with

"use of J2 deformation theory. Figures 253 and 254 show the results of an

analysis including imperfections of various amplitudes taken in the shape of

the bifurcation buckling mode. Figure 253(a) reveals that even though the

initial post-bifurcation slope is positive, the buckling load is sensitive to

initial imperfections. The onset of elastic unloading occurs at practically

the same load as the collapse load. Figure 253(b) shows that the difference

in predicted failure between the J flow theory and J deformation theory
22

models disappears for imperfection amplitudes greater than about one-tenth the

wall thickness. Figure 254 demonstrates that for very small imperfections the

plastic buckling load is not as sensitive to imperfec, ions as is the elastic

buckling load. Also, as Hutchinson [ 313] points out, imperfection sensitivity

4
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is not as severe a problem for plastic as it is for elastic shells because

"- plastic buckling requires relatively high thickness-to-radius ratios for which

it is much less difficult to manufacture "reasonably perfect" shells. This

* conclusion is borne out by the comparisons between test and theory for a

great variety of axisymmetric shells shown in previous sections. (See Tables

1, 2, 11, 12 and FigE. 120, 121, 164, 165.)

Hutchinson further discusses the effect of small imperfections on plastic

buckling loads in [ 314]. There he provides an asymptotic estimate of the

load at which elastic unloading begins. For many unstable structures this

load is only slightly below the limit load. An asymptotic expression for

* the limit load, such as given by Koiter's general theory for elastic shells

[Eqs. ( 74) and ( 75)] is not yet available. The main problem is that the

limit load of the structure with an infinitesimal imperfection in the form of

the critical bifurcation buckling mode is not infinitesimally close to the

"bifurcation point, as is true in the elastic range, but lies a finite distance

away. Consequently, elastic unloading usually occurs before the limit point is

reached. An asymptotic expansion of the initial part of the equilibrium solution

for the imperfect structure is valid only to the point at which elastic unloading

begins. Representation of the remaining part requires a second asymptotic

2_ expansion that accounts for the growing elastic unloading region.

"Hutchinson and Budiansky [ 315], Needleman and Tvergaard [ 316] and Tvergaard

-O [ 317] have devised asymptotic theories for the plastic limit loads X of

imperfect structures using hypoelastic theories (J 2 flow theory without elastic

unloading). Even though these asymptotic analyses ignore elastic unloading,

* they yield accurate predictions of the limit loads. Figures 255 - 257
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apply to elastic-plastic imperfect cylindrical panels under axial compression.

A Ramberg-Osgood-type material stress-strain law was used for the analysis:

= n +l] ( 80)-"E C -n

The figures show the effects of the circumferential angle 0 subtended by

the panel and the material hardening parameter n on the equilibrium paths

and limit loads of imperfect panels. (In each case the imperfection is in

the form of the critical bifurcation mode of the perfect panel.) Figures

255 and 256 show the results of an elastic-plastic finite element analysis

and Figure 257 shows a comparison between this numerical approach with the

"more approximate hypoelastic asymptotic approach.

"Qualitative Guidelines for Imperfection Sensitivity

The question so often asked by the analyst is: given the idealized structure

and loading, and given the means by which to determine the collapse of

oifurcation buckling loads, what "knockdown" factor should be applied to assure

a reasonable factor of safety for the actual imperfect structure?

We have seen examples (Figs. 57, 58, 84, 90, 96, 103) in which shells

* exhibit load-carrying capability considerably greater than that corresponding

to the lowest eigenvalue. Postbuckling stability is also exhibited by simple

- columns and flat plates. On the other hand, it is well known that the critical

"* loads of axially compressed cylindrical shells znd externally pressurized
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spherical shells are extremely sensitive to imperfections less than one wall

"thickness in magnitude. Figure 258 gives empirically determined knockdown

factors for monocoque axially compressed cylinders as functions of the radius-

to-thickness ratio. Similar curves would exist for externally pressurized

"monocoque spherical shells were there enough test data on which to base them.

These highly symmetrical systems are very sensitive to imperfections because

many different buckling modes are associated with the same eigenvalue or

closely spaced eigenvalues, the structure is uniformly compressed in a membrane

state, and the buckling modes have many small waves. Very small local imper-

fections will tend to trigger premature failure. The buckling loads of most

practical shell structures are somewhat sensitive to imperfections, but not

this sensitive. How much so is a very important question.

Buckling loads associated with local failure due to some known peculiarity of

the structure which can be modeled a priori are generally less sensitive to

unknown imperfections than are loads associated with buckle patterns covering

a large percentage of the surface area. Redistribution of the stresses occurs

as the load is increased; a serious unknown imperfection is less likely to

appear in the local area of the failure, and considerable local prebuckling

deformations occur, tending to diminish the significance of the initial unknown

* imperfections. Failure loads of structures that are submitted to enforced

displacements are likely to be less sensitive to initial imperfections than

are those for structures submitted to enforced loads. In the former case the

growth of an isolated buckle near the worst imperfection tends to cause

reduction of the stress in that area, shifting the load to the better parts

2
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of the structure. Buckling of cylinders with cut outs (Figs. 47 - 56) and

locally loaded shells (Figs. 150 - 155) are examples of this. Thicker

shells appear to be less sensitive to imperfections than thinner shells siimply

because it is easier during fabrication to control the quality of the shell.

Imperfection amplitude expressed in terms of wall thickness is therefore likely

* to be smaller the thicker the shell. Cylinders submitted to external pressure

- are less sensitive to imperfections than are cylinders submitted to axial com-

pression because the axial wavelengths of the buckles are longer in the former

i-r.se and eigenvalues do not cluster around the critical value. Hence, very

small local imperfections do not affect the critical pressure as much as they

-' do the critical axial load.

Axially Compressed Cylindrical Shells and Panels

Brief Survey of Work Done

The discrepancy siLown in Figs. 18 and 19 between tests and classical

buckling theory for axially compressed cylindrical shells has stimulated

scientists and engineers to produce many papers on this subject during the past

40 years. These works focused on post-buckling load-deflection behavior of

* perfect shells, various boundary conditions, nonuniform and nonlinear prebuckling

behavior and its effect on bifurcation buckling, empirically derived design

formulas, and, most important, initial geometric imperfections.

Nonlinear Post-Buckling Behavior of Perfect Shells: It was recognized early

that the discrepancy between test and theory and the scatter of critical

,'--. 258
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"experimental loads shown in Figs. 18 and 19 are related to the existence

of postbuckling equilibrium configurations at loads well below the critical

load, and that as a consequence the shell is very sensitive to geometrical

imperfections and other disturbances. The first effort to analyze the shell

*-. behavior in the postbuckling range was Donnell's in IQ34 [ 318]. His analysis

-"--was over-simplified, and more adequate postbuckling analyses were later presented

by von Karman and Tsien [ 319] and Tsien [ 320]. It was suggested vt that

"time that the minimum post-buckling load be used a, a design load. This minimum

was about one third of the classical buckling load ai'd thus reasonably close

to the average of available test results. The minimum postbuckling load was

termed, somewhat unfortunately - the "lower buckling load." The postbuck'Ang

analysis waE successively refined in Refs. [ 321 - 3251 as described in the

very thorough and readable survey by Hoff [ 29] and displayed in Fig. 20(b).

- The results of Ref. [ 325] seem to indicate that with increasing shortening

of the cylinder the postbuckling load asymptotically approaches zero or, if

more accurate basic equations had been used, a value that is dependent cn the

radius-to-thickness ratio of the shell but which for practical dimensions is

very small. As a result of these studies it has been determined that the mini-

*..' mum postbuckling load is not suitable as a design load.

O

"Variouis Boundary Conditions and Nonuniform or Nonlinear Prebuckling Effects: A

rather comprehensive review of the effect of edge conditions on buckling is

given by Hoff [ 29]. Some of the papers [ 326, 327] retain the assumption

common to most previous shell-buckling analyses that the prebuckling conditions

can Le sufficiently accurately described by use of a nonlinear membrane solution.

In others [ 328, 329] an accurate nonlinear prebuckling analysis is included.
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It was found in those analyses that if the shell elge were free to move in the

tangential direction, the critical load would be reduced by a factor of 2.

Results from Ref. [ 152] are listed in Table 10, and a comparison of Lhe

results of Hoff and Soong [ 330] and Almroth [ 15'] for a cylinder with

r/t = 1000 and L/r = 1.014 are listed in Table 25. The conditions corres-

ponding to Xcrit near 0.5 (half the classical load N = 0.6 Et 2/r) are not

likely to be realized in practical anDlicatiots. However. one could argue

that it is possible that a considerable reduction in the load-carrying

capacity of the cylindrical shells might result from some kind of "effective"

elastic constraint at the edges. This argument has been addressed by Almcoth

[ 331] and Cohen [ 96] who show that a very small amount of elastic constraint

is sufficient tu make the critical load of the shell approximately equal to the

critical load of a shell with full constraint.

Almroth [ 331] also investigated the effect of the prebuckling deformations

caused by edge constraints by using a rigorous solution for the axisymmetric

prebuckling equilibrium state. In Table 25 his results are compared with

those obtained by Hoff and Soong [ 330], who neglected the effects of pre-

buckling deformations. Inclusion of the effect of the Prebuckling deformations

reduces the expected buckling loads by only 15 percent at most. Therefore one

must conclude that neither the infl'ence of the boundary conditions nor the

effect of the prebuckling deformations caused by the edge constraint account

for the large reduction in the load-carrying capaciL•y f perfect cylindrical

shells in axial compression nor do these factors explain the large amount of

scatter of experimental results.
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Empirically Derivea Design Formulas for Monocoque Cylinders: As a consequence

"of the lack of an adequate theoretical analysis, the designers of axially

U compressed cylindrical shells have been forced to use empirical methods. In

1957, Harris et al [ 164] made the first attempt to devise a design limit by use

of a statistical analysis of available test results. For different probability

levels, a reduction factor 0 is given as a function of the radius-to-thickness

* . r-io. Figure 258 shows the design curves for axially compressed monocoque

cylindrical shells.

The disadvantage of this statistical analysis procedure is that some test

-v results affect the design although they are really irrelevant because of the

manner of fabrication or their size. There is no bonus for the mar.nfacturer

who can produce an almost perfect shell.

For analyses such as that of Ref. [ 164], it appears that the number of

available tests constitutes a sufficient statistical background as long as

the buckling coefficient for a fixed probability is a function of only one

variable, R/t. This is the case for longer shells; however, for shorter

shells the shell length becomes an additional parameter and the number of

available tests is not really satisfactory.

Design Rules for Stiffened Cylinders: For orthotropic shells or stiffenpd

shells, the number of influential parameters becomes so large that a purely

empiricc qpproach is out of the question. More or less conservative design

261



principles have therefore been applied. For stringer-stiffened axially

compressed cylinders, it has been quite generally assumed that the effect of

curvature is negligible and thus that the wide column load should be appli-

cable as a design limit. This principle has been applied also in the analysis

of buckling between rings (panel buckling) for cylinders stiffened with rings

as well as stringers. An approximate method for determination of the ring

"size such that general instability is avoided is given by Shanley [ 332]. The

Shanley method, being purely empirical and based on a very few test results,

is not reliable and in addition is restricted in application because it cannot

be used for a case in which the stringers are oversized.

In Ref. [ 333] it is recognized that use of the wide column load as a design

limit for stringer-stiffened cylinders is unduly conservative. It is suggested

that a term be added to the wide column load which corresponds to the curvature

effect. This term represents a reduction factor times the difference between

"the classical buckling load and the wide column load. After definition of an

effective radius-to-thickness ratio, this factor can be obtained from test data

for monocoque shells, as shown in Fig. 258. The same type of approach ..s used

in Ref. [ 334], but here the wide column load is replaced by the minimum post-

buckling load. It was found in the analyses of Refs. [ 335] and [ 336] that

the minimum postbuckling load is relatively high for the cases in which the0

agreement between test and classical buckling theory is reasonably good, i.e.

"for short stringer-stiffened shells, ring-stiffened shells, pressurized shells,

and core-filled shells. As a consequence, the method of Ref. [ 334] gives

good results for a very general class of shells. However, it was shown later
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"325] that the minimum postbuckling load, if it exists at all, may be much

below the results of Refs. [ 335] and [ 336]. Hence, one is reluctant to

recommend this method as a design procedure.

in Ref. [ 337] a set of design rules is given for stiffened cylinders. The

same basic approach is used for the selection of a reduction factor as in

Rets. [ 333] and [ 334], but the importance of stiffener eccentricity is

recognized and, in view of the results of Ref. [ 325], the wide column

load is relatively high (short cylinders, core-filled cylinders). More

rational design criteria are needed, however, for pressurized cylinders and

"ring-stiffened cylinders, for which the wide column load does not take into

account the stabilizing effects of internal piessure and rings. Almroth,

et al [ 34] formulated a semi-empirical design method that will be described

in more detail later.

Effect of Geometric Imperfections: Koiter 15, 298] was the first to

formulate a general theory which in the special case of axially compressed

cylindrical shells reveals the extreme sensitivity of buckling loads to

"initial geometrical imperfections. The principal elements of Koiter's theory

are outlined in the previous section. In his doctoral thesis published in

"1945, Koiter shows that if certain conditions prevail in the neighborhood of

the bifurcation point, the buckling load of the structure is sensitivc to

geometrical imperfections. The axially loaded cylinder was found by Koiter

to be an extreme example of such structures. In addition to the early post-

buckling analyses of perfect sbells, which lead to qualitative judgment
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concerning the imperfection sensitivity, Koiter presents asymptotic formulas

' 74) and ( 75)] for determination of the critical load in the presence

of small-amplitude imperfections. Numerical results are given for cases in

which the imperfections are axially symmetrical. Although a most important

contribution in the field of thin shell stability, Koiter'- work re'eived

little attention until the early 1960's because the thesis was written in

LM.. nJAl...t _CLrU1 6t AL. &Lý.A. >SL.2 LCL ._L L) . C r ~ n
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Compact and readable presentations of Koiter's theory are given by Budiansky

and Hutchinson [ 302] and Budiansky [ 304, 300].

The number of papers on the effect of imperfections on buckling of axially

0 compressed cylinders is large. The reader is referred to the surveys by

Hutchinson and Koiter [ 6], Tvergaard [ 7], Budiansky and Hutchinson [ 299],

and Arbocz [ 339] for details. Only a few papers which demonstrate the

scope of the field will be mentioned specifically here.

Donnell and Wan in 1950 [ 301 were the first in this country to recognize

in a formal theory that geometrical imperfections provide the major reason

for the discrepancy between test and theory. Results of their theory, which

is described by Arbocz in [ 339], are shown in Fig. 20(a). In order to

SsiLplify their analysis, Donnell and Wan made certain assumptions which

reduce the work to a qualitative rather than quantitative demonstration of

the importance of imperfections.

The ultimate aim of all imperfection sensitivity analyses is to determine

the maximum load-carrying capability (X in Figs. 7 and 249; P in
s
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in Fig. 250(a)). The search for X of P has been accomplished in the

following ways:

(1) A general imperfection shape containing both axisymmetric and non-

symmetric components has been assumed and the nonlinear compatibility

and equilibrium equations of the Kirmdn-Donnell theory [ 339] have

"been used to trace the load-deflection curve up to and perhaps past

. .its maximum. This is the approach taken, for example, by Donnell

and Wan [ 30], Hutchinson [ 340], Arbocz and Babcock [ 341] and

Arbocz and Sechler [ 342].

(2) An axisymmetric imperfection shape has been assumed and X identified
s

as the lowest load at which either axisymmetric collapse of non-

* symmetric bifurcation occurs from the axisymmetrically deformed pre-

"buckled state. This is the approach taken by Koiter in his classic

paper published in 1963 [ 343], by Almroth, et al [ 34] in their

extension of Koiter's "special theory" [ 343] for derivation of a

design method for stiffened and internally pressurized cylindrical

shells, and by Tennyson and Muggeridge [ 344], who investigated the

effect of local axisymmetric imperfections.

(3) Koiter's "general theory" is used to obtain the factor b in Eq. ( 73).

("a" is zero in thiV case because of the periodicity of the buckling

• mode in the circumferential direction), and Eq. ( 75) or its

equivalent for the multi-mode case is used to obtain the peak load

X • This approach is used by Hutchinson and Amazigo [ 345] and
5

Hutchinson and Frauenthal [ 346] in their studies of eccentrically

stiffened and barreled cylindrical shells, and by Amazigo and Budiansky

265



3471 in their asymptotic treatment of buckling of axially compressed

cylinders with localized or random axisymmetric imperfections.

(4) A "brute-force" approach is used to obtain the peak load X as discussed
S

-"" -in the chapter on nonlinear collapse. For example, the STAGS computer

program [ 48] has been used for the analysis of axially compressed

cylinders with cutouts, as illustrated in Figs. 47- 56, and the

-w:, BOSOR5 program [ 47] has been applied to determine axisymmetric

collapse loads of a complex elastic-plastic rocket interstage (Figs.

59 - 61) and elascic-plastic cylindilcai shells (Tables 1 and

S... 2).

0

Governing Equations for Asymptotic Post-Buckling Approach

The purpose here is to demonstrate the derivation of the imperfection sensitivity

- parameter b in Eqs. ( 72) and ( 75) for an important case in which stiffeners

-" and load-eccentricity are present and for which it is necessary to account for

nonlinear prebuckling behavior in the asymptotic analysis. The asymptotic

"formulation including nonlinear prebuckling effects was first set forth almost

"- simultaneously by Fitch [ 348] and Cohon [ 349]. The derivation given here

* follows closely that provided by Hutchinson and Frauenthal [ 346] for slightly

"•- 1- barreled cylindrical shells.

"*O'" Kirmfn-Donnell Equations: These equations can be derived from the .onlinear

kinematic relations of the Dor.nell-Miushtari-Vlasov type "see Tables 5-9 of

Rc-f.[430O-jith use of the principle of virtual work. Such a derivation is
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given by Hutchinson and Amazigo in [ 345]. Stiffener properties are "smeared

"out" in the manner of Baruch and Singer [ .160] to arrive at effective bending

and stretching stiffnesses for the skin-stiffener combination. The governing

equations can be reduced to an equation for moment equilibrium and one com-

patibility equation written in terms of the normal outward deflection of

the shell W and a stress function F:

LD[W] + LQ[F] = F W + F W -2F W (81)
D ,xx ,yy ,yy ,xx ,xy ,xy

L1 [F] - LQ[W] =W 2 W ( 82)H-",xy ,xx ,yy

in which x and y are the axial and circumferential coordinates in the shell

middle surface. The linear differential operators are defined by

L= D + 2D i DD xx ,xxxx xy ,xxyy yy ,YYYY

LH[ ] =Hx[] + 2H[ ] + Hy[XX ,xxxx ,xy xxyy YY yyyy (83)

Formulas for the effective bending and stretching stiffnesses are listed

in Table 26.

Consideration is restricted here to cylinders (and slightly barreled cylinders)

with an isotropic skin and axial stiffening. Thre. parameters are needed to
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characterize the stiffening properties if the torsional rigidity of the stringers

"is ignored. These are the area ratio As/d t, the bending stiffness ratio
os S

E1 /Dd and the eccentricity ratio e /t where A and I are the area and moment

of inertia of the stringer, d is the distance between stringers and e, the

distance from the skin middle surface to the stringer centroid, is taken to

be positive when the stiffener is on the outer surface of the shell. The

resultant membrane stresses in the skin Nx, N and N and the averaged resultanty xy

membrane stress in the axial stringers N are related to the stress function and
s

the normal displacement by

,N + N = F N =Fxx N = -
x s ,yy; y ,xx; xy ,xy

84)

N = A F +A F +3B Wx xx ,xx xy 9vy xx ,xx

with A xx Axy, and B given in Table 26. In the briet outline of the
.x xx

*• initial postbuckling analysis which follows, the general theory will not be
5-4..

repeated but results from it will be translated directly into the W-F

notation of Kdrmdn-Donnell theory.

Prebuckling Analysis- The axisymmetric prebuckling deformation of the perfect

shell can be written as

C.0 0
"W =w(x,P)

"" ( 85)

O 0 1 0 +
F r 2¶rR +f(x,P)
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in which P is the total compressive load applied to the cylinder. Although

the prebuckling behavior is nonlinear, the two fourth order differential

4,.-.-. 0 0"equations governing w and f are linear in these quantities. These two

"equatioas can be reduced to a single linear fourth order equation for w 0

01VIT off 0 A xP
A ''f (B 21R 2r7F
C+Bw0  cW= 2+ ( 86)

2frEtH xx x

- with an auxiliary equation for f

-" -:vA P
• 0'' 0'' 1 v

H f Off Q w of+- _1 0_
xx xx R 2•EtR ( 87)

I d(
where( and•'2"-'..dx

2

Q 22Q1
•'•'- xx 2xxi

CA = D + XX CB CC ( 88)
xx xx RH

xx

Asymptotic Analysis: The classical buckling load of the perfect structure is

denoted by PC" In all the cases examined by Hutchinson and Frauenthal [ 346]

P, is the load at which a nonaxisymmetric bifurcation from the prebuckling

state occurs. According to the Koiter theory [ 15, 298, 338, 3031 an

asymptotic perturbation expansion of the solution, valid in the neighborhood

of this bifurcition point, can be obtained in the form
4,•.

SP 2
P 1 + a(6/t) + b(6/t) + . . . ( 89)
C

"0 (1) 2W(2)"W W +6W + 6 .+ 90a)

F = F0 + 6F(I) +6 2 F(2) +... ( 90b)
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in which 6 is the amplitude of the buckling mode W [Identify 6/t with

-" and P/P with X in Eq. ( 73).] The prebuckling solution is also expanded
Da C

about the critical load [ 348, 349] so that

W 0 Wc° + (P c)Wc + 1(P P c)W0 +
(91)

0 0 (P P 0 + 1i - Pc2Fc0
W~ F +P-PF +.

0 0 "W 0 a 2 ewhere W WO(xP) W, W petc.

T e C C 3P P PC C ý,2 P=

The expansions ( 90a,b) with ( 91) generate a sequence of linear boundary value

problems corresponding to like powers of 6 and P-Pc" The problem for W and F

follows directly from Eqs. ( 85- 87).

-"--0 + ' + PC . 0, 0
AC-+ B 2TrR c CC

M A 1 0't
+;x RiR 2RIWc ( 92)

27EtH R2 + x
xx

o?0'' 1 . 0 M ( 3
H f Q+-w3
xx C xxc R C 2IrEtR

The classical buckling problem is a linear eigenvalue problem arising from

i1:isertion of the expansions ( 90a,b) into Eqs. ( 81) and ( 82) and collection

of all terms linear in 6. The eigenvalue problem is thus given by

LD[W() 4+ LQ[F() + - W ()_fc W
D ] 2 ,R xx C yy

(-94)
0il (1) =Swc F 0

C ,yy
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Sepatated solutions for the buckling mode have the form

"W (x,y) = w(1 (x) cos(ny/R)

(95)

F( 1 (x,y) = f 1 )(x)cos(ny/R)

in which n is the number of circumferential waves associated with the buckling

mode. Ordinary differential equations follow directly from insertion of

Eqs. ( 95) into Eqs. ( 94). Boundary conditions are listed in the Appendix

of [ 346].

Anticipating that the post-buckling behavior is symmetric with respect to the

sigi, of 6 ["a" = 0 in Eq. ( 89)], we obtain [by insertion of the expansions

( 90a,b) with 91) and ( 89) into Eqs. ( 81) and ( 82) and collection of

all terms quadratic in 6] the second-order linear boundary value problem,

LD [W (2) +LQ[F (2) PC (2) '' (2)
D+Q 2Wxx ,yy

0O''F (2) _i1 (1)w(1) '

F -wC = - (n IR ) { (f w )

, yy 2

+ cos (2ny/R)(f w + f- w ( 96)

LH[F(2)] - (2) + e0 i' ,y (2)
L F LQ[W +] W

= (n/R)2 {-(w(I)2) + cos (2ny/R)(w w - w
22 2
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These equations can be reduced to two systems of ordinary differential

equations with separation of variables according to

w(2) = w (x) + w (x) cos (2ny/R)

(97)

F( f (x) + f (x) cos (2ny/R)

Solutions of the above boundary value problems are sufficient to yield the most

important information about the initial post-buckling behavior and the associated

imperfection sensitivity. In every case corsidered here the first postbuckling

coefficient, a, in Eq. ( 89) is zero because the buckling modal displacement

W and stress function FM() are harmonic with respect to the circumferential

coordinate y. Therefore, the initial relationship between the load ana the

bucklin• displa- ,went amplitude of the perfect shell hinges on the sign and magnitude

of b. If b is negative the load carrying capacity diminishes following buckling

and the shell is imperfection-sensitive, while if b is positive the structure

retains some ability to support increased loads once bifurcation has taken place.

Throughout this derivation 6 is consistently identified with the amplitude of

the bucklIng modal displacement by normalization of the maximum value of W(I)

to be unity. Thus in Eq. ( 89), 6/t is the ratio of the buckling amplitude to

the skin thickness and not uhe effective thickness of the stiffener combination.

The formula for b is derived by Fitch [ 348] to be

F (2)*(W 1 W1  + 2F *(W(1), W(

PC [O*(w(I)w(l1) + 2F( 1)*(c 0,W(1) )

in which the following shorthand notation has been used
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A*(B,C) = [AXB C + A B C
f 2 - ,y ,yy ,x ,x

-A (B C + B C )]dS ( 99)
,xy ,x ,y ,y ,x

"and the integration is over the entire middle surface of the shell.

__ .Initial Post-Bifurcation Load-Deflection Curve: The initial slope of the

generalized load-deflection curve just following bifurcation yields further

informatioa concerning the extent to which buckling can be expected to be

gradual or sudden under the two limiting conditions of loading: prescribed

load and prescribed generalized displacement. The generalized displacement

is the average end displacement. For cylindrical shells this average end

displacement can be written as

(U W 1d ( W2 qW )dS 100)
f= )dS= (x - 2 ,x ,xx)

S

where U is the axial displacement and q is the loading eccentricity, that is

the distance from the radius of axial load application to the skin middle

surface, positive for loads outside the middle surface. A Taylor expansion

"of , witn use of Eqs. ( 89 - 91) yi Ids

S= 1+ cc - 101). .AC

in i-hich a is a fairly lengthy expression in terms of W( etc.

"£ which will not be given here. A similar calculation yields an expression for

- c for the barreled cylinders A, denotes the average end displacement at the

. critical bifurcation load P

_CI
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Imperfection Sensitivity: Finally, a measure of the imperfection-sensitivity

of the structure is most easily obtained by consideration of the effect of an

initial deviation of the shell niddle surface from the perfect configuration

in the shape of the buckling mode. Thus with an initial imperfection

"" = W the maximum support load PS is related to the classical buckling

"load P and the imperfection amplitude 5 by the asymptotic formula [See Eq.
C

*" ( 75)] of the form

P/Pc =1- 3(2)-2/3 -b)1/3  I 2/3

SPC 1 () (b ýti +.

(102)

1. - 1.89(-b)/3 Pt 2/3

The imperfection dmplitude has been normalize, with respect to the skin

thickness t. When the prebuckling state is a purely membrane one, b = b,

but in the present case in which prebuckling deformations are not ignored

Ii348],

b{FcO(W((I) ) + F (1 )( C }2
bo - ( 103)

{P0[Fc0* (1), (1) (1) 0O (1) 2
,W + 2F 2(W N

Numerical Methods Used to Solve the Various Boundary-1.Vilue Problems and

Evaluate b, b, and a: Hutchinson an6 Frauenthal [ 46] describe how they

solved the boundary value problems ( 92, 93), ( 94), and ( 96) and

evaluated '- in Eq. ( 93), a in Eq. ( 101), and b in Eq ( 103):
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"In nondimensional form tha several boundary value problems and associated

boundary conditions are specified by the following nondimensional quantities:

E1 /Dd , A /d t, e s/t, q/t, R/Rx, Z, nL/R and v. The ordinary differentialS S S S

"0 . 0 (1)
,equations for w. w, w , wC, w, etc., are reduced to finite difference

"form and solved by use of a well-known Gaussian elimination scheme due to

Potters [ 350]. The eigenvalue problem for the classical buckling load and

mode can be solved in the usual way in which the lowest eigenvalue associated

with integer values of n is found, and then the lowe!7t of them all is

identified with the classical load. Results were obtained by treating nL/R

as a continuous variable and thus it was not necessary to specify the length-

radius ratio of the shell. This procedure is consistent with the fac: that

the critical value of nL/R turns out to be a fairly large number and for an

L/R of order unity or less n itself will be fairly large. Therefore, the

results can be regarded as exact for any value of L/R such that the associated

value of n is integer ar.1 approximate for other values of L/R with an error

in the buckling load of -rder 3 /r and an error in b, b and a of order i/n.

In any case, application of the Donnei1-Mustari-Vlasov strain measures is

restricted to shells for which n > 5, say. In every sample presented (by

Hutchinson and Frauenthai ' 346!) a single buckling mode is associated with

the critical eigenvalue and the expansions ( '79- 91) were made in anticipation

of this fact."

"The expressions for b, b and a can easily be reduced to ordinary integrations

over the x coordinate and these integrations were performed with a standard

numerical integration scheme. As a check on accuracy, some examples from
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• • b, • . . . ° . . • • . .*• ..', . C b •..,% C. -o

reference [ 345], in which the prebuckling deformation was identically zero

' .and for which closed form series solutions were available, were run as

special cases of the present procedure. With sixty integration stations

over the half length of the shell, accuracy to within about one tenth of

one percent could be obtained for the quantities b, D and a. Slightly

less accuracy should be expected for the cases in which prebuckling defor-

mations are important. All results are for a Poisson's ratio of 0.3." [ 3461

Governing Equations for the Nonlinear Approach

In contrast to the method described in the previous section, this is not

an asymptotic appruach. The restriction imposed in Koiter's general

asymptotic theory that result3 are valid only in the neighborhood of the

bifurcation point of the perfect structure is not present. The nonlinear

approach is still based on the Karman-Donnell equations, but in this case a

stress-free imperfection sl-ape, W and series expansion are assumed for the

normal displacement increment w from that corresponding to the perfect

shell in the prebuckling membrane state (W = Wmembrane + w). These

expressions are substituted into the compatibility equation, which is

solved exactly for the stress function F in terms of W b e and the assumed

increment w. The equilibrium equation is then converted by means of the

Galerkin procedure into a set of simultaneous nonlinear algebraic

equations in terms of the load parameter X, the 'aperfection amplitude •,

and the undetermined coefficients i of the series expansion assumed for the

increment w.
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Hutchinson's Formulation [ 340]: The equilibrium equation ( 81) and com-

patibility equation ( 82) for the initially imperfect -ýylindrical shc!l

"become

LD[W] + L [F] = F (W + W + F (W + W
D Q ,xx ,yy oyy ,yy ,xx o,xx

104)

-2F (W + WoxyJ
,xy ,xy ox

LH[F]- L[W] = W (W + 2W -W WH Q ,xy ,xy o,xy ,xx o,yy

105)

-W (W +w )-yy ,xx o,xx

Any radial imperfection pattern W can be represented as a double Fourier
0

"series in the axial and circumferential coordinates x and y. For an isotropic

shell, Hutchinson [ 340] considered a two-term series

W = -•It cos(qox/R) + • 2 t cos(sqx/R) 1 R) 106)

in which

4 22 2
qo 12(1- v )R2/t ( 107)

The first term in Eq. ( 106) represents aa imperfection in the form of the

axisymmetric buckling mode, which Koiter [ 343] found to be most degrading.

The second term represents a nonsymmetric buckling mode with square buckles,

which Koiter [ 343] determined corresponds to the critical bifurcation

mode of a perfect cylindrical shell or a cylindrical shell with a small
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*0 axisymmetric imperfection given by the first term in Eq. ( 106). The

"". quantities 1 and $2 are the ratios of the amplitudes of the imperfection

components to the shell thickness. [Identify • with 6/t in Eq. ( 102)

and owimp in Eq. ( 75).]

2 .-, The total radial displacement W is represented in [ 340] by
-.

W =W + w 108)
membrane

* -~in which

w = tit cos(qox/R) + • 2 t cos(-qo x/R) cos(2-qoy/R)

1 1 -' 109)
+ E 3t sin(2-qox/R) cos(2--qoy/R)

with •i' F2 ' 3 indicating the ratios of the amplitudes of the radial

deflection increment in the axisymnatri- and nonsynmnetric modes to the

shell thickness.

Equation ( 108) with Eq. ( 109) is inserted into the compatibilit', equation

( 105), which is then solved exactly for F in terms of W = w brae plus

the assumed increment w. The equilibrium eŽquation ( 104) is then solved

approximately by substitution therein of F thus found and the assumed W, with

subsequent application of the Galerkin procedure. Hutchinson [ 340] thereby

obtains the following nonlinear algebraic equations for the undetermined

coefficients l' ,2 and 3i terms of the normalized load parameter X and

0
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the imperfection amplitudes ! an.2 for an axially Cowpressed isotropic

cylindrical shell with uniform internal pressure:

S3 ($2 32) 1
- A) + c- c 2 - ) + 1 cý2 • 2 + Ai +

13 2 + +%

200 c4(Z 2 + 2 )1[2, 1 + Q l - 2

22
13c2
200 (K - 3 = 0

7 + p -k + c - c~ ~l+ c 2 -
'2 ~ 2 c 1 2  1'' P2

13

(p - A)[2 + 13 - ! ' -2(l -.i)1 + (110)

* 1 2(r + + 1, 2.--c. ([2+ 2) (22+22") = 0

and
-3 +13 c22U3(1 + p - A) - Cý r + 13 c 2 3 +

ý3 c 1 3  C 3 ;1 25 1 Ili K 3

1 2_3
c 3 =0

2 1/2 - 2 2, " 1/2where c = [3(1 - A)] and p - (pR /Et2)[ 3 (l-2)]

The normalized axial load parameter A is the ratio of the axial load to the

classical buckling load NCL of an internally pressurized cylinder

NCL = (1 + p/2)Et 2 /([3(1-x2)]i/2R ( 111)
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Arbocz and Babcock's Fo'.,ulaion [ 3411: This approach was used by Arbocz

and Babcock [ 3'&!]; Singer, Arbocz, and Babcock [ 351]; Arbocz [ 339]; and

Arbocz and Secni~r I 3, , wno generalized it for application to isotropic
Land stiffened cylindrs with meas'ired imperfections that do not necessarily

"resenble buckling modus of the perfect shell, For example, for axially com-

pressed isotiopic cylindrical shi lls, Arbocz and Babcock [ 341] assume that

the initial imperiection has the form

- I t" Co co

W = ~t cos i - + c k 2-x
0 L •2 L R

112)

*'" + 13t sip k R cosL R

and the incremental radial deflection w is approximated as

Sw =It cos i + >t cos k. cos Z1 L cos L R

SR (113)

+ ý t sin k 32nx r-

They obtain much more complicated nonlinear equations than ( 110) for &i.

2 and I in terms of the normalized load parameter X, which simplify

-2 -2 3"to the following if terms of order and are neglected
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'0

1 2 2
* ~ ~~ 1 (C1  X ) +C[ 2 2  33* 2 3]

"+ C3[(E2+ + 2C - (ý3 + 3) 3 1

7(C + 8Cr 2, + U +-2 4 3 + C 3 12( 1 + ')2 24 ( 114)

+ 8C2 (• 2 + c2)•1 =

(C- ) - 8C 3 [2(EI + + +

-8C 2 ( 3 + 3 = :1

"with the coefficients C1 , C2 , C5, and C4 given by

2*C a2

C': C 2

2 16 2

(.115)
2 2. C a22

4 2 + 2)2

4 2 + (a 2 + a 2

4 2a ( 2 + 21

in which

S2 .2 Rt (=,2 a2 =k2 Rt (•2 )2 2 Rt (i2R-t ý "2 2 A= 2•t !28 
1161
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where

C = [3(i-)]12 ( 117)

Behavior of Perfect Cylinders: If prebuckling axisymmetric bending due to

localized edge effects is ignored, the post-buckling behavior of perfect

axially compressed isotropic cylindrical shells, as predicted by Eq. ( 114),

is illL,• catred in Fig. 259. If C > C there is no incremental radial
1 4

deformation w [Eq. ( 113)] until the load parameter A equals C4. At C4

-.ifurcation into the F2 or c3 mode occurs and the load X falls along the

unstable parabolic post-bifurcation branch with deformation occurring in

both the I and F2 (or •3) modes. Since the axisymmetzic imperfection

Samplitude ,= O, can be either positive or negative. If CI < C

"there is no deformation until A = C1 ; then deformation w

in the axisymmetric mode occurs at a constant value of X, since the

*. load-deflection curve corresponding to axisymmetric post-bifurcation

behavior is of tne type shown in Fig. 8(a). When attains the value

(C 4 - C1 )/8(C 2 + 2C 3 ), bifurcation into the F2 (or ;3) mode occurs and A

*i..,•,• falls with deformation in the Fi and F 2 (or F3) modes as before. Since

= 0, ! can be either positive or negative.

Behavior of Imperfect ýylinders: The shell with a general !mperfection shap'

"( #0 and either 2 #0 or both F2 and 3 0) behaves as shown in

Fig. 260: the bifurcation point at either C1 or C4 , depending on the

2 2 ~2 -1] scnetdit iigeometrical parameters aA9 a , LEq. :161, is converted into a
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point N at which snap-through occurs to a non-adjacent equilibrium state.
s

The behavior fur a pure axisymmetric and a two-mode nonsymmetric imperfection

is shown in Fig. 261 for the case C1 > C If the imperfection is purely
1 4.

axisymmetric (i # 0, 2= 0), then the prebuckling deformation is
"1 ~ 2 '3

" purely axisymmetric until bifurcation of the solution into one of the non-

symmetric modes occurs. If •i is negative, then the prebuckling deformatior

'1 is negative and bifurcation occurs into the 2 mode at X= Xbif" If is

positive, then the prebuckling deformation •i is positive and bifurcation occurs

into the 3 mode at the same load 'k = Following bifurcation, the value of
'3 bif'

I falls along the unstable parabolic post-bifurcation branch with deformation

occurring in the 2 (or 3) as well as the axlsvmmetric mode E .i The behavior of

a shell with both axisymmetric and one asymmetric imperfection (i # 0, # 0,
1 '2

"0 or - f 0 = 0 , 0) is shown by the general solution curve in Fig.
'3 1 2 '3

261. Here the deformation occurs in both the •I and •2 (or •) modes for any

nonzero values of '.

Arbocz and Babcock [ 341] obtained the maximum value of s(\ ) by tracing thes

2 2 2curve corresponding to the general solution for fixed A a , and d in the

(A, g 2 )-plane or the ( 3, )-plane. The equation of the trace was programmed

on the IBM 7094 computer and used in a search for the pair of critizal modal com-

ponents defined as that ccmbin~ttiD; of one axisymmetric ýnd one asymmnetric imper-

fection component that yields the lowest value for N . In their analysis,
s

Arbocz and Babcock [ 341] chose k = i/2. Then in the mrnimizatPon of thl-

buckling load k = C orresponding Lo nonsynmnetric deformations, the Aircum-

ferential wave number Z is computed from
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"2 + -c= ( 118)

which is the restriction on the buckling modes imposed by the classical

linearized theory (see Koiter [ 298]).

Axially Compressed Monocoque Cylindrical Shells: Numerical Results

Cylinders with Sinusoidal Axisymmetric Imperfections: The most significant

Sresults for this problem were obtained by Koiter in 1945 [ 15, 338] and

1963 [ 343]. They are given in Fig. 262. The curve labeled "General

Theory" corresponds to the asymptotic post-buckling analysis [ 151 which

Koiter originally claimed was valid only for imperfection amplitudes up to

j-T about 30% of the shell wall thickness. The two curves laboeled "Special

Theory" correspond to an analysis of the type described in the discussion

associated with Eqs. ( 104 - 109), which is valid for larger imperfection

amplitudes. In this analysis the cylindrical shell is assumed to have an

* ""axisymmetric imperfection of the form

S4 = -lt cos (2px/R) ( 119)

The "Special Theory" curves in Fig. 262 correspond to bifurcation loads,

* as indicated by the zallout " BIF in Fig. 261, at which the axisymmetrically

".-" .deformed prebuckked shell bifurcates into a nensymmetric mode. Koiter

selected an imperfection shape in the form cf the axipymmetric buckling

mode of a perfect shell, for which an axial wavelength parameter p is

given by
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2 p2 (t/R)(l/[3(l-2)]i/2) - 1/2 (120)

The two curves labeled "Special Theory" in Fig. 262 were generated

with the assumption that the buckling mode has the form

w(x,y) = tC cos (px/R) cos(ny/R) ( 121)

It is reasonable to assume that the buckling pattern has twice the axial

wavelength of the imperfection because this choice permits nodes of the

buckling modal displacement at locations along the cylinder axis where the

induced prebuckling circumfr ential tension is maximum and maximum buckling

modal radial displacements at locations where the induced circumferential

compression is maximum.

2.
In Fig. 262 2 is a circumferential wave parameter given by

T2 2n (t/R)(l/[3(l-v 2)] ) ( 122)

1or normalized imperfection amplitudes 'j less than about 0.3 the lowest

2bifurcation load X1 corresponds to T = 1/2 (square buckles). Larger

imperfections cause buckling with smaller values of t 2(buckles elongated in

the circumferential direction); the lowest curve in Fig. 262 is the pre-

2
dicted envelope of critical bifurcation buckling with various T . This

curve represents an upper bound because Koiter's analysis is based on use
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of a kinematically admissible approximate buckling modal displacement

"'" pattern [Eq. ( 121)], exact satisfaction of the compatibility equation

( 105), and approximate satisfaction of the equilibrium equation ( 104)

via Galerkin's procedure.

%'.-

2
For a constant value of T = 1/2 and u > 0.579 there is no bifurcation

buckling because the stabilizing influence of the increasing meridional

curvature as the axial load is applied to the axisymmetrically wavy shell

is more significant than the destabilizing influence of the compressive

2
stress resultants. Similar curves exist for T < 1/2 with the envelope

of the minima of these curves plotted in Fig. 262.

"Although the results of Fig. 262 qualitativcly confirm Koiter's general

"asymptotic theory, they do net support it conclusively: The curve

labeled "General Theory" in Fig. 262 corresponds to a limit load X such
S

as shown in Figs. 249(b) and 260, whereas the Special Theory envelope

corresponds to bifurcation buckling XBIF' such as indicated in Fig. 261.

It remains to investigate the rost-bifurcation behavior of the axisymmetrically

"imperfect cylindrical shell. This was done by Budiansky and Hutchinson

352] and Pederson [ 353, 354]. Results are shown in Fig. 263.

Budiansky a7 I Hutchinson [ 352] found a transition from unstable to stable

post-buckling behaviour as tL.= bifurcation load drops below about 30 per

"cent of the classical value (Fig. 263 for 3 = C). However, for imperfection

wavelengths larger than that of the classical bifurcation mode, Pedersen

"[ 353] found that this transition may take place at bifurcation loads below

15 per cent of the classical value (Fig. 263). In a subsequent paper

Pedersen [ 354] used a Galerkin solution to demonstrate that loads can be
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cairied above the lowest bifurcation load, even though the initial post-

bifurcation behaviour is unstable. All of these results are supported by

experimental evidence, in that very few test results exist for which the

* critical axial load is less than about 25% of the classical load.

"Cylinders with Localized Imperfections: Amazigo and Budiansky [ 347]

assumed an imperfection in the form

W =-te ( 123)
0

* and developed an asymptotic formula for the buckling load, X
S

(1-s!) /2= [3/23/2 (A/A) ( 124)
s c s c

2 1/2
in which c [3(1-v )] and

L 0 ~ix-15J e dx

where

x 7xb./c; 9. = rij12(l-V2 )]1-1/4 (Rt) 1 / 2  ( 126)
c

The length Z. is the half-wavelength of the classical axisymmetric bucklingc

mode. Hutchinson, Tennyson, and Muggeridge [ 355] performed a numerical

analysis with use of a "cosine dimple"
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w - (l+ cos rx/Zx) Ixk 9

"--. ( 1> )

-0 x >Zx

They obtained results for various values of k /A. taking in'., account
x c

end effects and nonlinear prebuckling deformations. They also p.Irformed

tests on spin-cast epoxy-plastic cylindrical shells with axisvmwetric

- . dimples of the form ( 127) machined into them. Figure 264 shows the LcbulLb

of the test and theory of Ref. [ 355] compared with the asymp-otic solution

( 124) of Amazigo and Budiansky [ 347] and the Special Theory of Koiter

343]. The sensitivity to a dimple of critical length £ is severe,
C

but less so than that correspondiag to imperfections extending the entire

.".' length of the cylinder ir. the shape of the axisymmetric bifurcation mode.

Similar asymptotic results have been obtained by Amazigo and Fraser [ 356]

for a circumferentially dimple-shaped imperfection in a pressurized

.i,. cylinder. Buckling of axially compressed cylinders with another type of

local imperfection - a cutout, is discussed in the chapter on nonlinear

collapse, with results from various tests and analyses appearing in

Figs. 47- 56.

0 Cylinders with Random Imperfections (Axial Compression cr External Pressure):

Tvergaard [ 7] provides a survey:

"While most of the investigations mentioned previously consider

.* deterministic impc:.ections in the shape of the critical buckling

mode, some research has been directed towards the realistic

situation where imperfections are known as stochastic rather than
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"deterministic properties. One approach is that taken by Amazigo,

Budiansky and others, who consider the initial imperfection to be

a sample function from an ensemble of ergodic, zero-mean, stationary

Gaussian random functions with known autocorrelation. The analyses

based on methods of stochastic differential equations lead to

asymptotic estimates of the buckling load corresponding to a given

imperfection magnitude, and due to the ergodicity hypothesis, this

buckling load is given with probability one. Shell buckling results

have been obtained by this method for axially compressed cylinders

"with random axisymmetric imperfections [ 34,, 357] and for

externally pressurized cylinders with imperfections that vary ran-

e domly in the circumferential direction [ 358]."

"Another approach takes an imperfection of given shape with a

random amplitude, or the sum of a finite number of given imper-

fection shapes with random amplitudes. The applied load can also

be taken as a random parameter. Then, using the deterministic

relations between imperfection parameters and buckling load, the

probability that failure occurs can be calculated provided the

joint probability density function of these random parameters is

* known. Recent treatment of stochastic stability problems from

this point of view, for an axially compressed cylinder and for

"other structures, have been given by Roorda and Hansen [ 359,

3601, Augusti and Baratta [ 361] and Johns [ 362]. Amnzigo [ 363]

has discussed the two different approaches and used the latter on an

externally pressurized cylindrical shell." [ 7]
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Amazigo and Budiansky [ 347] provide a unified analysis in which they derive

asymptotic formulas for the maximum load-carrying capability X of axially
.~ $

compressed cylinders with axisymmetric impe" fections of either the modal or

random or local form. The formulas are written in very similar ways in terms

*[ of an appropriate measure q of the imperfection. These formulas are:

"For a modal imperfection [of the type in Eq. ( 119)]:

[2(1 - X /X )I2 2(3)3/2 (A /X )77 (128)
s c c

*" . c c

where

=2A(l v 2 (1 129)

For a random imperfection (over entire cylinder length):

7/4 3/2
[2(1- X 2(3) (= ( 130)

s c s c

where

-n =( - 2)/(2Y)I/2 (131)

For a local imperfection [of the type in Eq, ( 123)]:

S[2(1 - I)3/2 2(3)3/2(/Ac)1 (132)

sI) (c s c

where

"= A(l - 121/2 ( 133)

) /2
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"In Eqs. ( 130- 133)

f wo(x) eixdx ( 134)

and

£ - qL/R ( 135)

with q given by Eq. ( 107). Fig. 265 shows how the buckling load

A /A varies with n in each of the three cases.
s c

* Cylinders with Internal Pressure: Hutchinson [ 340]calculated the maximum

load-carrying capability of isotropic axially compressed cylindrical shells

with varius amounts of internal pressure. His numerical results, some of

which are shown in Figs. 266 and 267, are based on Eqs. ( 110) with

-2 -2 3
terms of order [F2, - 2, and C neglected. The buckling load Am = NcRNCL'

with NCL given by Eq. ( 111), corresponds either to collapse as shown in

Fig. 260 or to bifurcation as shown in Fig. 261, depending on whether

or not the nonsymmetric imperfection component g2 is present.

In Fig. 266(a) the combinations of 1 and •2 are such the unpressurized

cylinder buckles at AM = 0.7, and in Figs. 266(b,c) the unpressurized

cylinder buckles at XM = 0.5 and XM ; 0.3 respectively. It is clear from

the results that the asymmetric imperfections are smoothed out by the

pressure, whereas the axisynmetric ones are not. If •1/2 is small, A M
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almost attains the classical value when p is near unity. If, however, the

initial imperfection is purely axisymmetric, the buckling load is much less

influenced by internal pressure, as indicated by the curves for /l/ 2

... Figure 267 shows comparisons between the theory of lutchinson [ 3401 and

tests on Mylar cylinders by Weingarten, Morgan, and Seide [ 364]. Because

Mylar can undergo fairly large strains before deforming plastically,

"Weingarten et al. were able to perform a series of buckling tests on each

specimen with increasing internal pressure. Hutchinson comments on the

comparisons between test and theory [ 340]:

* "Figure 267 presents two typical test series and two theoretical

curves chosen from Fig. 266 which best fit the experimental data.

Weingarten et al. did not report any information with respect to

either the form or magnitude of the imperfection which would permit

us to assign values to •. and •2 Certainly the imperfection

representation ( 106) assumed in the ý.nalysis could represent the

true imperfection only in an average sense; and especially for

p < 1, a more exact description would require additional asymmetric

terms. Nevertheless, the trends of the present theory are very

* much like the experimental trends, and the experimental -results

can be reproduced by an appropriate a posteriori choice of •i and

S2

"The radius-thickness ratio of the previously mentioned tests ranged

from 200 to 2000, with the maximum load of the unpressurized shells

292



ranging from about 0.6 of the classizal value at R/t 200 to 0.3

at R/t = 2000. This R/t dependence is most readily interpreted

in light of the present analysis by associating larger imperfections

"(relative to the shell thickness) with larger values of R/t.

Indeed, it seems reasonable that such would be the case."

',,ing from the results presented, the relative amount of the

axisymmetric imperfection is small as compared to the asymmetric

imperfections in the Weingarten et al. test specimens. This is

particularly the case for specimen 100.2, and the buckling load

is only slightly below the classical value for p > 1. Included

in Fig. 267 are data from a series of tests on axially loaded,

pressurized aluminum cylinders performed at the Distance Velocity

Laboratory (DVL) and re.,ported by Thielemann [ 365]. In this

"series of tests, naw specimens had to be used for each test; and

although the radius and :hickness were unchanged, there was un-

doubtedly some variation in initial imperfections from specimen to specimen,

-* as indicated by the data scatter. The important feature of these

tests is that the buckling load remains well below the classical value

• for values of the pressure parameter well above unity. Axisymmetric

initial imperfections are strongly suspected." C 340]

Axially Compres.ed Cylindrical Panels: Koiter [ 3661 performed an asymptotic

post-buckling analysis of narrow, long cylindrical panels simply supported

on the longitudinal edges. If the panel is sufficiently narrow the bifurca-

tion stress is given by
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S= (I +E 4) ( 136)
c 3(1 - v2)b2

in which the important panel "depth" parameter, 9, is

9 = 112(l - v2 )] A/ 4 ,[2(Rh)1/2] 137)

The geometrical parameters in Eqs. ( 136) and ( 137) are shown in

Fig. 268(a), with simple support conditions presumed to exist along

adjacent stringers. Figure 268(b) displays load-end-shortening curves

for panels with various depths. The post-bifurcation slope for 0 = 0

corresponds to that of a flat plate (see Fig. 223), and as 9 increases

this slope decreases. Critical loads on panels with 9 > 0.64 are sensitive

to imperfections, with this sensitivity increasing toward the value for a

complete cylindrical shell as 0 increases, as shown in Fig. 268(c) and

(d). These plots (c,d) correspond to panels with initial imperfections

in the form of the classical buckling mode with amplitude 10% of the

panel thickness.

Stephens [ 367] extended Koiter's analysis to include internal pressure

and finite torsional stiffness of the stringers at the panel lcngitudinal

edges. Figs. 269 and 270 exhibit results from Stephens' treatment,

which agrees with Koiter's [ 366] for internal pressure p = 0 and stiffener

torsional rigidity parameter y = 0. The dimensionless critical axial stress

is normalized with respect to the classical buckling stress of a complete

cylindrical shell with the same R/t as the panel. The maximum load-carrying

capability X of imperfect panels can be calculated by insertion of the
s
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imperfection sensitivity parameter b into Eq. ( 75). As expected, both

internal pressure and stringer torsional rigidity reduce the sensitivity

of the axial buckling load to initial geometric imperfections in the form

of the classical bifurcation mode.

Axially Compressed Oval Cylinders: In the chapter on nonlinear collapse

is given an example of bucklin6 of an oval cylinder subjected to uniform

axial compression. Load-deflection curves for perfect and imperfect oval

cylinders are exhibited in Fig. 57. These results were obtained by

"brute force" from a two-dimensionally discretized model analyzed with the

STAGS computer program [ 48]. This problem poses a special difficulty

for t'ie analyst because the maximum load-carrying capability occurs at an

equilibrium state that is not in the neighborhocd of the initial bifurca-

tion point, and the deformations at this far post-buckled state do not at

all resemble the classical bifurcation mode. Figure 271 shows schematically

load-end-shortening behavior for three values of eccentricity B/A: Figur=

271(a) corresponds to B/A = 1.0 or near 1.0, Fig. 271(b) corresponds to

B/A < 1.0, and Fig. 271(z) corresponds to B/A << 1.0. Kempner and Chen

[ 3681 stu !ied the far post-buckling range in 1964; Hutchinson [ 249]

performed an asymptotic Koiter-type post-bifurcation analysis in 1968; and

Kempner and Chen [ 248] used a perturbation method to obtain load-deflection

curves in the near post-buckling region while retaining the capability to

predict equilibrium states in the far post-buckling regime in 1968.

Figures 272 and 273 show some of Hutchinson's results from the asymptotic

treatment. In Fig. 272, Mode I indicates buckling which is symmetrical
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about the end of the minor axis; Mode II indicates anti-symmetry about this

point. Figure 207 disploys typical bifurcation modes of Types I and II

predicted from an analysis with BOSOR4 [ 14] in which an oval cylinder is

modeled as a torus. Figure 273 shows Type T modes predicted by

Hutchinson [ 249] for various B/A. The quantity R is the radius of an0

"equivalent cylinder", that is, a cylinder with perimeter equal to the

perimeter of the oval cylinder. R is the radius - curvature at

the end of the minor axis B. Figure 272 shows that flatter oval cross

S.- sections are less imperfection sensitive than are circular-cylinder-like

geometries, a result which follows intuitively from the post-buckling

behavior of axially compressed cylindrical panels exhibited in Fig. 268:

"the flat oval cylinder resembles two cylindrical panels placed opposite one

another.

Axially Compressed Stiffened and Composite Cylindrical Shells: Numerical Results

Asymptotic Post-Buckling Analysis of Axially Stiffened Cylinders: The results

shown in this section were derived by Budiansky and Hutchinson [ 305] and

their coworkers [ 345, 346] from specialization of Koiter's asymptotic

* theory [ 15, 298, 303, 304]. The theory is summarized in the

discussion associated with Eqs. ( 81) - ( 103). Budiansky and Hutchinson

i"• [305], in reporting on the work of Hutchinson and Amazigo [ 345], wrote

*- in 1966:

"There has beer. much interest recently in the exciting rediscovery

"-I.'" of van der Neut's early theoretical observation [ 3691, now well
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confirmed by tests, that outside stringers can be much more effective

*. than inside stringers in stiffening a circular cylinder against

buckling under axial compression. It has been suggested occasionally

that classical theories of buckling should be reliable for the quanti-

"tative prediction of the buckling loads of stiffened cylinders,

regardless of whether the stiffeners are inside or outside. Recent

calculations [ 345], however, have shown this not to be so, and an

example is given in Fig. 274 for a simply supported cylinder. If

* torsional stiffness of the stringers is neglected, three parameters

are needed to characterize the stiffening. These are the area ratio

A /dt; the bending stiffness ratio EIs/Dt; and the eccentricity ratio

(l - V2 ) /2(s/t) where s, the distance from the skin center line to

the centroid of the stringer, is considered to be positive for outside

"stiffening. The values chosen for these nondimensional parameters in

the present example correspond to only moderately heavy stiffening

and are shown in Fig. 274. The curves at the top of Fig. 274 give,

as a function of Z, the bukling load per unit circumference of the

"stiffened cylinder divided by the corresponding quantity for the

unstiffened cylinder, and were calculated on the basis of "smeared-out"

stiffener properties. These results imply the superiority of outside

over inside stringers. This conclusion, however, clearly must be

tempered by the results for the postbuckling coefficient b which show

that the cylinder with outside stiffening generally is much more

imperfection-sensitive than the one with inside stiffening. It should

be emphasized that the coefficient b in this figure still is defined

with respect to buckling displacements normalized by the skin thickness
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and not by any larger effective thickness of the shell-stringer

combination. Consequently, over a substantial range of Z in the

vicinity of 100, it appears that the effects of initial imper-

"fections in reducing the strength of cylinders with outside

stringers below the theoretically predicted classical buckling

loads would be by no means negligible. On the other hand, it is

"interesting to note that in the range of high Z above 1000 both

inside and outside stiffeners induce quite comparable imperfection-

"sensitivity, and so the benefits of outside stiffening would appear

to be quite dependable in this range. in any event, the most important

* conclusion to be drawn is that, without supporting evidence, either

experimental or theoretical, it would be incorrect to assume that

classical buckling theory is adequate for the prediction of the

bucklng strength of stiffened cylinders under axial compression,

especiaily if the stiffening is on the outside." [ 305]

The results of Hutchinson and Amazigo 345] are based on use of the membrane

prebuckling state. Hutchinson and Frauenthal [ 346] extended the treatment

of [ 345] to account for nonlinear prebuckling behavior and barreling of

• the cylinder generator [Rx# 0 in Eq. ( 83)]. Some of their results are

given in Table 27 and Figs. 275 - 278.

* Figure 975 shows the buckling load, the imperfection-sensitivity parameter

b [Eq. ( 103)] and the initial slope 9 of the load-end shortening curave

"[Eq. [ 101)] as functions of the length parameter Z for a cylinder which

0-.<
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"is bcth simply supported and loaded at the skin middle surface. The same

parameters are displayed in Fig. 276 for a completely clamped cylinder.

Numerical data from which these figures were plotted are given in Table 27

0
along with data for other quantities such as b, nL/R and 9C the slope of

the prebuckling loal-end shortening curve at the critical load. The stringer

parameters are EI /Dd = 100, A /d t = 1 and e /t = + 6. To emphasize the

role of stiffening, Hutchinson and Frauenthal normalized the buckling load

"of the stiffened shell (Pc~stiff. by the "classical" buckling load of a long

unstifiuned cylinder witb the same radius R and skin thickness t.

Inclusion of nonlinear prebuckling effects does not alter the conclusions

demonstrated in Fig. 274 that location of the stringers on the outer

surface of the shell enhanzes the resistance to buckling but simultaneously

increases the sensitivity to initial geometric imperfections, at least over

some of the range of Z. The shell considered in Fig. 275 is identical to

one of the examples analyzed in Ref. [ 345]. A comparison of the two sets

of results demonstrates that prebuckling deformations must be correctly

"accounted for if accurate quantitative values are to be obtained. However,

the trends indicated by the simpler analysis of Reference [ 345] are unchanged.

For clamped shells, Fig. 276 indicates that the imperfection sensitivity

of externally stiffened shells as measured by b diminishes steadiiy as Z

becomes large. In contrast, however, the initial slope 9 of the post-

buckling load-end shortening curve is very negative, which suggests that

buckling of a nearly perfect shell will not be gradual even under prescribed

end displacement though the sensitivity co imperfections is very low. This

example reveals that b and 9 must in general be regarded as measures of two
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different characteristics of a structure. The parameters characterizing

the shell in Fig. 276 correspond quite closely to some of the test specimens

discussed by Card and Jones [ 370]. The values of Z associated with these

z,,& imens were well above 1000, and the buckling behavior of the stiffened

cylinders seems to be consistent with the theoretical pred-ction of

catastrophic buckling under prescribed end displacement coupled witb

relatively low imperfection sensitivity.

The simply supp-rted cylinders discussed in connection with Fig. 275 were

assumed to be supported at the skin middle surface with the axial load

acting through the skin middle surface as well. Therefore, the axial load

induces an end moment about the effective centroid of the skin-stiffener
I
. combination. In the case of the internally stiffened shells this moment

'. induces a compressive hoop stress which tends to lower the buckling load.

. If the inside-stiffened cylinders were s' _ted at the centroid of the

stringers, then the prebuckling moment would have the opposite effect.

"Examples of this effect are given in Figs. 128- 132.

In Fig. 277 is presented an example which illustrates the extent to which

the load eccentricity influences the initial postbuckling behavior. The

internally stiffened shell marked "loaded at skin centroid" is the same as

that considered in Fig. 275. The curves labeled "loaded at stringer centroid"

are for the same shell but, as discussed above, simply supported at the

centroid of the stringers. !3ading eccentricity is clearly a very important

factor in determining the buckling load particularly in the lower range

of Z. At the same time, the imperfection sensitivity and the tendency for

catastrophic buckling go up sharply along with the buckling load. This is

... ................. :
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a common trend in shell buckling: design changes which raise the bifurcation

buckling load of the perfect shell without increasing the amount of material

tend also to increase the sensitivity of the critical load to initial geometric

." imperfections. We have seen this phenomenon in the case of optimization

"(Figs. 238- 244) and will see it again in a following section on buckling

"" . ot axially compressed cylindrical shells made of laminated composite material.

" Figure 278 shows the effect on bifurcation buckling and early post-buic.±ing

"behavior of a small barreling of the cylinder. The usual quantities are plotted

2 1/2versus the shell rise parameter 8[1 - v l/H/t. Even slight barreling,

corresponding to a rise at the equator of only several skin thicknesses, has

a pronounced effect on the buckling load.

The externally stiffened shell is a good deal more imperfection-sensitive

than the internally stiffened one in this example when neither is barreled.

Any amount of barreling seems to diminish the sensitivity of the externally

stiffened cylinder, while it increases the sensitivity of the internally

stiffened one over the range in which its buckling ±oad rises rapidly

with increasing barreling. However, once the barreling is sufficiently

large to cause little further increase in the classical load, then even

greater barreling seems to have as its main effect a decrease in the

imperfection sensitivity. This is an example which is counter to the trend

just discussed, that design changes which tend to raise the bifurcation

buckling load also increase the imperfection sensitivity.
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As a conclusion to their study, Hutchinson and Frauenthal wrote [ 346]:

"In general, stiffening lowers imperfection sensitivity. Some

tests on carefully prepared cylinders with moderately heavy

stiffening suggest that loads close to those predicted for the

perfect structures can be obtained, although it is not entirely

clear what boundary conditions actually have been enforced in

a number of these tests [ 153], [ 371]. More lightly stiffened

cylinders show much greater discrepancies between predictions for

the perfect shells and tests [ 153]. Recently the assertion has

been made to the effect that the classicPl buckling analysis should

adequately predict the actual buckling loads of cylindrical shell

structures with practical levels of stiffening [ 372], [ 373].

"The present results suggest that perhaps such a blanket assertion

may be incautious until further studies and tests to deLeimine

optimal configurations of stiffening, barreling, etc., have been

carried out. This note of caution seems to be further justified

since catastrophic buckling has been observed in a number of the

tests reported in the recent literature." [ 346]

Laminated Cylindrical Shells Made of Composite Material: When composite

materials as opposed to metals are used in plate and shell structures, the

following questions arise:

302

" 6N



1) Metal plates, stiFfened shells, and shallow cylindrical panels with

supported edges can sometimes carry loads considerably in excess of

the lowest bifurcation buckling load. The skin may buckle locally,

transferring its load to adjacent structural elements. Examples

include axially compressed oval cylinders (Fig. 57), the pear-

shaped cylinder (Fig. 58), and stiffened panels with oversized

stringers (Fig. 243). In view of the brittleness of composite

materials, will designs which permit local buckling remain feasible?

2) Are cylinders of composite material (with anisotropy and membrane-

bending coupling) more or less imperfection sensitive than isotropic

cylinders?

3) Will the actual size of typical geometric imperfections in practical

applications be more or less severe than they are in metal cylinders?

4) Do other types of imperfections, such as voids and delaminations

affect the buckling load for structures made of composite material?

A number of publications attempt to answer the question of whetter cylindrical

shells of compo-ite material are more or less sensitive to small geometric

imperfections than are isotropic cylinders. Use of a nonline:ar analysis

374], Koiter's general theory [ 375], and Koiter's special theory [ 376]

indicate that in comparison to isotropic cylinders, composite cylinders may

be somewhat less sensitive to geometric imperfections. Also, in keeping with
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the trend mentioned above, it is clear that cylinders with close to optimum

fiber orientation are most sensitive. This is illustrated by Figs. 279

and [ 280]. Other results for buckling of composite cylinders are shown in

Figs. 144- 146.

The possibility remains that composite cylinders, while less sensitive to

-) imperfertiv.s, as manufactured display more severe imperfections and therefore

possibly more severe knockdown factors. Additional observations of experi-

ments and measurements on practical structures are required before this

question can be satisfactorily answered. The possibility must be faced that

the composite material plates and shells contain flaws of other types than

those that affect isotropic cylinders. It does not seem likely that delamina-

tions will pass undetected through any reasonable inspection if they are large

enough to cause the type of separate buckling that is discussed in [ 377].

However, smaller delaminations will still reduce the stiffness of the shell.

Although the results of the bulk of test data seems to be reassuring, the

fear that repeated loading can cause a growth of such flaws is not completely

dispelled.

"A final evaluation of the state of the art must, of course, be based on results

"from laboratory tests and from the experience acquired by use of composite

material in structural applications in the past. Many experimental results

on the buckling of composite material plates and shells have been presented

over the last few years. In general, they tcnd to indicate that the theory

for composites is approximately on a par with the theory for metal shells with
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respect to its reliability. It is prudent to assume, however, that quality

control may be better for laboratory test specimens than for mass-produced

structural components. The literatiure scanned during a recent evaluation of

the state-of-the-art [378] contains little information about the performance

of actual hardware.

In Ref. [34] a procedure is presented for calculation of a lower bound to

* the buckling load. This procedure, to be described in more detail later, is

based on Koiter's special theory [ 343] and the assumption that cylinders

with the same effective radius-to-thickness ratio, (Rlt),, have identical

dimensionless amplitudes of axisymmetric imperfections when these imperfe'ý-

tions are expressed as a percentage of the wall thickness of an equivalent

isotropic shell with the same wall radius of gyration as that of the composite

cylinder. Predictions with use of this method were compared in 1970 to the

test results on composite cylinders available at that time. All the test

specimens failed above the prediction by ttus lower-bound method. However,

a comparison shows that the procedure is only slightly less conservative

than direct application of the knockdown factor for the equivalent isotropic

cylinder with the same (R/t) . A similar evaluation of results obtained in
e

later experimental investigations would be of value. As of this writing

there is little reason to recommend different knockdown factors for cylinders

of composite materials under axial comoression than those chosen from charts

such as Fig. 258 for the equivalent isotropic cylinder. For cylinders

in torsion or external pressure, a knockdown factor of about 0.8 seems to

be appropriate (see [ 172]). For fairly wide cylindrical panels (or local

buckling between stiffeners of complete cylinders) the results in Ref. [3791
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indicate that knockdown factors similar to those for complete cylindrical shells

*i must be used. Of course, for narrower panels the situation is more favorable,

as has just been shown for isotropic panels (Figs. 268, 269): Sufficiently

* narrow panels of isotropic material are able to carry loads above the critical

load. Due to brittleness, such use must be further tested before it can be

recommended for the design of panels made of composite materials.

It must be noted that in a few experiments extremely low buckling loads were

obtained and were discarded as not being representative. It is possible

that similar test results went unreported in other cases. While test results

generally support the use of composite materials in stability-critical struc-

- -. tural components, some dcubts remain and additional research is advisable.

This is particularly true if composite materials are to be used at elevated

hygrothermal conditions. The effects of the viscoelastic nature of the

matrix in these applications appears to be essentially unexplored. Such

special problems as nonlinear stress-strain curves for shear or different

moduli in tension and compression seem to have little effect on the critical

"load. However, more research should be devoted to the effects of transverse

shear and certainly additional experimental results are most welcome. Finally,

the development of methods for nondestructive testing, possibly based on the

Sonzhwell plot (see [ 3791, for example), may eventually allow the designer

of composite shells to sleep well at night.

9.

Calculation of Load-Carrying Capability Based on Measurements of Imperfections

In the applications described so far the imperfection has been assumed either

to be proportional to the bucklirc mode or to be a known localized disturbance,
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usually an axisymmetric dimple of deterministic form. Arbocz, Babcock, Sechler,

*. and their coworkers at the California Institute of Technology [ 339] have

developed techniques for measuring cylindrical shelIs and generating double

Fourier series representations of the imperfections. Figure 281 (a) shows

" typical imperfection fields measured for a stringer-stiffened shell a

ring-stiffened shell, and a monocoque shell. Figure 2bj (b) shows

the surface condition at axial loads about ten percent below the failure

loads. Using a nonlinear analysis based on the Kgrmgn-Donnell equations

C 104) and ( 105) with imperfections and incremental normal displacement

"of the forms given by Eqs. ( 112) and ( 113), respectively, Irbocz,et al

[ 339] calculated maximum loads A which generally explain approximately

* 60% to 80% of the difference between the classical buckling load and the

"test load. Particularly interesting is the unexpected growth of nonsymmetric

deflection patterns with long axial wavelengths in the cases of the ring-

stiffened and isotropic shells. It is very likely that extension of the

series expansions ( 112) and ( 113) would bring test and theory into

better agreement.

Arbocz and Williams [ 380] carefully measured a 10-ft. diameter stiffened

cylinder photographed in Fig. 282(a). The measured imperfection field

is shown in Fig. 282(b). Calculating collapse loads from the theory given

in Eqs. ( 104) and ( 105) with Eqs. ( 112- 118), they cop-]uded that the

lowest predicted buckling load compares favorably with values usually

recommended for the design of similar shell structures. Unfortunately, no

test results are available for the 10-ft. diameter shell.
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*0 Design Method for Axially Compressed Cylinders

Almroth, Burns, aad Pittner [ 34] suggest the following semi-empirical

method for evaluating designs of practical cylindrical shells which may be

pressurized, stabilized by an elastic core (such as a solid propellant

rocket motor), stiffened, of laminated composite wall construction, and

etc. An effective radius-to-thickness ratio (R/t) is first calculated from
e

the formula

(R/O- 2 M-1/2 18
(R/t)e [5.46(C44 + C55)C22/(CC22 - C1 2  (138)

with

014N[ 44 = 44 Cll1

S2 139)
S 0 -25

" 55 55 C2 2

The C in Eq. ( 138) are the coefficients of the integrated constitutive

"law for the complex shell wall wh 4 ch relate the stress and moment resultants

to the reference surface strains, changes in curvature and twist:

N1  C 0 0 C C 0 e
-1 t1 1o 12 14 151

N.[ Cl C12 C1 C15

"N2  12 22 0 024 25 2

N2 11 01 140 01 0 e2
02 33 0 0 036 1e2  (140)

M 1 (" 014 024 0 044 045 01

- 2  C015 C25 0 C45 C55 0 f 2

M - 12  0 0 C36 0 0 C66 2Kc2

The C are given in Ref.[430] by Eqs. (85) for the general case and by

Eqs. 205)-( 208) for laminated composite shell walls.
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Corresponding to the effective radius-to-thickness ratio (R/t) calculatede

from Eq. ( 138), a Knockdown factor 0 is read from one of the three

empirically derived curves in Fig. 258 corresponding to isotropic cylindrical

shells. (Almroth, et al recommend the 99% probability curve.)

Buckling loads for the trial complex design in question are then calculated

in two ways:

(1) from a wide-column formula wh-ch includes a stabilizing con-

tribution due to the curvature and

(2) from a computer program based on a,& extended version of Koiter's

Special Theory [ 343] which is based on the assumption that the

imperfection is axisymmetric and which accounts for stiffeners,

orthotropic laminated skin, elastic core, and internal pressure.

Critical Load from Wide-Column Theory: The critical axial load/length of

circumference calculated from the modified wide-column formula is

NCR =NWC + 0(NCL - N) ( 141)

in which the wide-column buckling load NWC is given by

2 2
N WC R C4 4  ( 142)

for shells without elastic cores and

2- 1/3 2.2/31NWC = 1.19(R Cl- C) 3 ( 143)
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for shells with an elastic core of modulus E and Poisson's ratio v•C In
C .

Eq. ( 141) the second term on the right-hand-side represents the contribution

due to the curvature. NCL is the classical buckling load calculated from

*[ a theory such as that given in Eqs. ( 81), ( 82), and ( 94) with use of

Table 26, but extended to include ir.Lernal pressure and an elastic core.

A formula for NCL is given in the appendix of Almroth, Burns, and Pittner's

paper [ 341. The quantity 0 in Eq. ( 141) is the knockdown factor repa

from the appropriate curve in Fig. 258 corresponding to the (R/t)e
See

calculated for the trial design from Eq. ( 138). This knockdown factor !.s

applied to the difference N - N because only that part of -he axial load
CL WC

is sensitivr to initial imperfections, the wide-column post-buckling

*behavior being characterized by the curves shown in Fig. 8(a).

"Critical Load from Extended Version of Koiter's Special Theory: The critical

axial load/length of circumference computed from the extended version of

Koiter's special theory (axisyr.netric imperfection) is the lowest real root

of the equation

3 2NCR aN + N + Y =0 ( 144)
CR CR CR

* in which a, 8, and y are complicated formulas that depend on the ge•rietric

and material properties of the shell wall and stiffeners, the core modulus,

the internal pressure, the assumed buckling pattern wave numbers in the axial

*-O and circumferential directions, and the amplitude p and axial wavelength Xp

"of the axisymmetric imperfection.
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The amplitude V of the axisymmetric imperfection is determined a priori in

the following way: A knockdown factor 0 corresponding to (R/t)e is read

from the appropriate curve of Fig. 258. Corresponding to this value of

0 the results of Koiter's Special Theory for isotropic shells are used to

obtain p. Thus, the dimensionless imperfection amplitude p is read from

the lowest curve in Fig. 262 for X1 = NcR/NCL = 0. The actual imperfection

amplitude to be uscd for the Koiter-theory analysis of the trial design is

then given by the product pte, where t is the effective thickness obtained21• e

from Eq. ( 138).

"-• It is assumed in the analysis that the axial wavelength of the buckling

pattern is twice the wavelength of the initial imperfection pattern. It

is assumed also that the normalized imperfection amplitude V for the

equivalent monocoque cylinder is applicable to any sinusoidal pattern of

imperfections whose wavelength X. is equal to or larger than the critical
imp

wavelength X for axisymmetric buckling of the perfect shell. The computerc

program in which the extended Koiter-type analysis is implemented first

computes X . (In the presence of an elastic core iteration is required.)
c

* -. The critical load N is then determined from Eq. ( 144) for a series of
CR

* imperfection wavelengths X. until a minimum is found. The half-wavelengiOV : imp

of the buckling pattern, which is twice that of the imperfection, is not

*•'' allowed to exceed the shell length. In addition, the critical load NCR

is, of course, minimized with respect to the number of circumferential waves.
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Formulas for the coefficients a, Y, y in Eq. ( 144) are given in the

appendix of Ref. [ 34].

Design Philosophy: The design philosophy in Ref. [4.34] is based on the

assumption that both the wide-column method and the Koiter theory method

* are conservative. Consequently, in a particular case the higher of the

predictions from the two methods is used as the design critical load. The

"comun-cer program which generated the results to be described next is listed

in Ref. [ 381].

Numerical Results: In Fig. 283 comparisons between test and theory are

shown for more than 250 cylinders of different types. The reference numbers

correspond to the references given in the paper -y Almroth et al [ 34]. In

Fig. 283(a), the test results are compared with the critical load N
CL

according to classical theory. Although all the theoretical results are for

cylinders with simply supported edges, the test conditions are probably

more likely to correspond to clamped edges. For most cases, it is believed

that the influence of the edge conditions is insignificant, but there may be

instances, especially for stringer-stiffened shells, in which the test

results would have been considerably lower if the conditions of simply

supported edges could have been realized. This is illustrated in the tables

K' of Ref. [ 153] for some stringer-stiffened and some filament-wound cylinders,

and it explains why three of the test results are above the classical load.

In Figs. 283(b), 283(e), and 283(d), the test results are compared withk "

the higher of the two predictions from the wide-column formula, Eq. ( 141),
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or the Koiter-type theory, Eq. ( 144). Figure 283(b) corresponds to the use

of the 50 per cent probability curve in Fig. 258, while the results in

Fig. 283(c) and (d) are based on use of the curves in Fig. 258 corres-

"ponding to 90 per cent probability and 99 per cent probability, respectively.

It appears from Fig. 283(c) that the results based on 90 percent probability

would not be entirely "safe" and that the 99-percent probability curve there-

fore should be recommended for design.

- For pressurized cylinders, a series of test results at different values of

the internal pressure was often obtained from the same test specimen. As

the format of Fig. 283 is not suitable for such cases, comparisons

between tests of this type and the theory summarized here are presented in

Fig. 284. Additional results for internally pressurized cylinders appear

in Ref. [ 341.

Conclusions: It is evident t-hat the classical buckling load is not a suitable

-•- design limit for any of these classes of axially compressed cylinders.

Although it has sometimes been stated in the literature that for one type

of cylindrical shell or another the classical theory would be applicable, the

designer is generally more prudent and applies conservative methods. As an

example, for stringer-stiffened shells the wide column load, Eq. ( 142), is

"sometimes used as a design limit and in other cases a part of the "curvatire

effect" is added, as recommended in Ref. [ 382] and given by Eq. ( 141).

The present method is less conservative because the corresponding design

," critical load is either equal to or higher than that of Eq. ( 141). For
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other cases, it is a common procedure simply to apply to the classical load

NCL the saim reduction factor 0 as for Lhe infinite monocoque shell with the

same effective radius-to-thickness ratio. In Fig. .85 the piedictions of

this simple alternative method (N = 0 • N ) are compaved with those of
CR

the method recommended here (NcR obtained from the higher of the predictions

"from Eq. ( 141) or Eq. ( 144)). It is seen that the latter method gives

the same or higher values in all cases and that sometimes the difference is

* substantial.

It is clear, therefore, that the design principles recommended by Almroth,

Burns, and Pittner [ 34] and sumruarized here will lead to more economic

"designs than the methods that are generally in use. At the same time, they

-. should be e-ttirely safe, '•,,ce out of more than 250 test specimens of many

different types every one failed at a value above the design load NCR

calculated from the higher of Eqs. ( 141) or C 144). It seems that improve-

ments may be possible through minor modifications of the method. The choice

of the curves in Fig. 258 and the definition of an effective radius-to-

thickness ratio may, for instance, be questioned. Although it is felt that

the method recommended in [ 34] represents a clear advantage over present

design practices, it is still aii interim solution that is acceptable only

because totally satisfactory methods are not available.
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Imperfection Sensitivity of Cylinders Under Uniform

Hydrostatic Pressure and Torsion

4.,•-.Uaiiforin Hydrostatic Pressure

Moijocoque Cylinders: Cylinders under uniform external hydrostatic pressure

are not nearly as sensitive to initial imperfections as are cylinders under

- unifocm axial compression. Evidence of this is contained in Fig. 25,

which should be compared with Figs. 18 and 19. An asymptotic imper-

fection sensitivity analysis has been carried out by Budiansky and Amazigo

383]. Results from their analysis are reproduced in Fig. 286. In the

upper half of the figure the classical buckling pressure pC in nondimensional

"form is plotted as a function of the length parameter Z appropriate for

either a simply supported cylinder of length L or a segment of length L of

an infinite cylinder reinforced by rings which permit no lateral deflection

but allow rotation. As in the case of the axially compressed cylinder, the

initial post-buckling behavior is symmetric uith respect to the buckling

amplitude 6, and therefore the pressure-deflection relation takes the form

= + b(-) 2 + . . 145)
PC t

where b is plotted in the lower half of Fig. 286. In this case, the

asymptotic relationship between the buckling pressure and the imperfection is

3/ V/S1  1/2 P
1 - • 3 - (-b) S (146)

S PC] 2 t PC
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where 6 is the amplitude of the component of the imperfection in the shape

of the classical buckling mode. A wide range of test data, collected by

Dow [ 384], is also included in the figure. Measurements of initial

deflections were not made in any of these tests, so it is not possible to

-. make a direct comparison of test and theory. On the other hand, the coinci-

dence of the large discrepancy between test .ind classicaJ predictions within

the Z-range in which b is most negative bears out the imperfection-

"sensitivity predicted.

Hutchinson and Amazigo [ 345] investigated stiffened "ylinders under uniform

hydrostatic pressure. Figures 287 and 288 show the normalized classical

-- buckling pressure and post-buckling coefficient b of stiffened and unstiffened

cylindrical shells. The classical buckling pressure of the unstiffened cylinder

":*i is calculated by Batdorf [ 169]. (A different buckling parameter is used in

- Figs. 287 and 288, however.) The associated post-buckling coefficient of

the unstiffened shell is given in Fig. 286.

Axially Stiffened Cylinders: Hutchinson and Amazigo [ 345] conclude that

"for axially stiffened cylinders under hydrostatic pressure,

• "The major effect of axial stiffening is to eliminate imper-

*i fection-sensitivity in the lower range of Z. Even very light

stiffening significantly diminishes the postbuckling coeffici.....

_• in the range uf Z in which the unstiffened cylinders are most

sensitive. When the postbuckling coefficient is positive,

in all likelihood, buckling will not be accompanied by
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catastrophic collapse and the cylinder may be able to sustain

pressures above the classical buckling prPssure. The inside-

outside effect of stiffening is less prominent in buckling unde:

hydrostatic pressure than under axial compression. Over some of

the range of Z, however, there is a definite advantage in outside

stiffening. At the same time, Lhe postbuckling coefficient b

provides a hint, but little more, that an outside-stiffened

cylinder may be more sensitive to imperfections than its irside-

stiffened counterpart. Out of all this, the most important

result ic zhat the classical buckling load should be a reliable

index of buckling strength in the lower range of Z." [ 345]

Ring-Stiffened Cylinders: The classical buckling pressure and post-buckling

coefficient of a lightly stiffened cylinder are compared with the corres-

ponding quantities for an unstiffened cylinder in Fig. 288. In the lower

*i range of Z the classical buckling load is higher if the rings are attached

to the outside whereas the opposite occurs for larger values of Z. Judging

from the postbuck]ing coefficient it would appear that the inside-stiffened

cylinder is slightly less imperfection-sensitive in the lower range of Z

than an outside-stiffened cylinder, although this effect is not sufficiently

pronounced to warrant any general conclusio:s.

The lightly stiffened cylinder buckles into a mode that has only one half-

wavelength over its length. If the amount of stiffening is increased the

number of axial half-wavelengths in the classical buckle pattern may exceed
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.- 1.one and, in fact, may be very large depending on the stffening and the value

of Z. Classical buckling loads and imperfection sensitivity are shown for

other degrees of ring stiffening in Ref. [ 345]. For ring-stiffened

cylinders Hutchinson and Amazigo conclude in [ 345] that,

"The results presented (in [ 345]) fall short of providing anywhere

near a complete picture of the initial postbuckling behavior of ring

"stiffened cyiiaders in the Z-independent range. On the other hand,

it does seem reasonable to conclude that imperfections may result

in fairly drastic buckling load reductions."

* General Conclusions: As a general conclusion based on their analytical

results, Hutchinson and Amazigo emphasize that,

"Under certain circumstZances, axial stiffening may I- a more

efficient means of strengthening against buckling under hydro-

static pressure than ring stiffening. Comparing the results

(for axially stiffened shells with those for ring stiffened

shells), one notes that an axially stiffened cylinder can have

a higher classical buckling pressure than a cylinder with an

"equivalent amount of ring stiffening. If, in addition, one

takes into account the predicted insensitivity of the axially

' stiffened cylinder in the lower range of Z and the sensitivity

of the riug sLiffened specimens, then the advantage of axial

stiffening is even more pronounced. Probably an optimum choice

would lead to a combination of axial and ring stiffening." [ 345]
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Cylinders Under Torsion

As seen from Fig. 27 buckling loads for cylinders under torsion are even

less sensitive to initial imperfections than are cylinders under hydrostatic

pressure. Budiansky [ 385] used Koiter's asymptotic theory to calculate

initial postbuckling behavior for various boundary constraints and values

of the Batdorf parameter Z. Some imperfection sensitivity is found for a

range of Z below 1000. The negative postbuckling coefficient b approaches

zero for larger values of Z. Comparisons between the theory of Ref. [ 385]

and tests by Yamaki [ 386] are given in Fig. 289.

Imperfection Sensitivity of Spherical Shells

Introduction

"We have already seen many examples of buckling of spherical shells. Figure

28 shows the post-buckled state of a complete spherical shell under uniform

pressure with an interior mandrel that limits the growth of the buckles.

Figure 29 shows schematically the transition from plate to shallow cap to

deep cap behavior. Load-deflection curves are plotted which imply that the

deeper the cap the more sensitive is the buckling pressure to initial

geometric imperfections. Figure 30 exhibits a comparison of test versus

theory for externally pressurized caps of increasing depth parameter
2 ,1/4-.....-.1/2

213(1 - v )j kr/h) , where H is the rise of the cap above its base
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and h is the thickness. This comparison reinforces the tentative conclusion

that the deeper (more like a complete spherical shell) the cap, the greater

_ts imperfection sensitivity. Figure 37 gives comparisons between test and

theory for more carefully fabricated specimens. The trend established by

the theory is supported by the test results.

Figures 37 and 63- 68 display behavior ol externally pressurized shallow

and deep spherical caps with edge rings of various cross-section areas and

eccentricity. In particular, Figs. 64 aind 65 lead to the implication

that the buckling pressure is sensitive to edge ring eccentricity.

Figures 83- 85 show buckling of spherical shell segments under axial

tension, and Figs. 86 and 87 give a practical example of such instability -

buckling of a large spherical tank for transporting liquid natural gas.

Figures 88 and 89 show experimental and theoretical buckling modal

displacements of a spherical shell with an outward-directed concentrated

load.

Bifurcation buckling loads of complete spherical shells under uniform external

pressure were first calculated by Zoelly [ 387], who assumed axisymmetric

deformations throughout his analysis, and van der Neut [ 388], who included

noi.symmetric modes. Both analyses lead to a formula for the critical

pressure

- 2 2
SCR 2E /(cR (147)
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with the parameter c given by

c [3(l V 2y-/2 148)

Experimental critical pressures, such as those shown in Fig. 30, revealed

at an early date that imperfections drastically affect the maximum load-

carrying capability. As in the case of early work on the cylindrical shell

under axial compression, attempts were made to derive practical formulas

for design based on the "minimum post-buckling load" [ 389, 320]. Low

post-buckling loads calculated for axially compressed cylindrical shells,

such as plotted in Fig. 20(b) have discouraged further attempts in this

* direction.

Most papers on spherical shell buckling are applied to clamped shallow

"Z-;ýI*.:=_ial caps. Although the prebuckling problem is more difficult for

this configuration than for the complete spherical shell, the calculation

of bifurcation pressure and nonlinear collapse is easier because the lowest

bifurcation load is unique and isolated from higher critical loads, and a

reasonable approximation to the nonlinear behavior of imperfect shells can

*, be obtained with fewer, simpler functions that is the case for the complete

shell. Kaplan [ 37] gives a thorough review which will not be repeated

here. Surveys are also presented by Fung and Sechler [ 389], Koiter [ 390],

H.utcinson and Koiter [ 6] and Tvergaard [ 7]. The work done on initial

postbuckling behavior based on Koiter's general theory [ 15, 298] is

summarized briefly in [ 6] and [ 7].
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"As pointed out in tha section on axially compressed cylindrical shells, the

ultimate aim of all imperfection sensitivity analyses is to determine the

maximum load-carrying capability (A in Figs. 7 and 249; PS in Fig. 250(a)).

In the case of spherical shells the search for X or P has been accomplished
S S

in the following ways:

1) Koiter's general theory [ 15, 298] has been specialized for the analysis

of a complete spherical shell, a shallow spherical cap with a well-defined

boundary condition on a parallel circle, and a shallow portion of a complete

shell with a rectangular plan form but with unspecified boundary conditions,

and a shell of revolution. These approaches have been taken, for example, by

Koiter [ 390], who performed both first and second-order asymptotic post-

buckling analyses of complete spherical shells; Fitch [ 348] and Fitch and

Budiansky [ 391], who used Marquerre's equations [ 392] in polar coordinates

to obtain the factor b in Eqs. ( 73) and ( 75) for clamped spherical caps

"with axisymmetric loads distributed uniformly over a portion of the surface;

*]. Hutchinson [ 393], who used shallow shell equations in Cartesian coordinates

to obtain X in a case for which multiple buckling modes exist at the critical
S

load AX; and Tong and Pian [ 394], who used a mixed finite element method
c

for the post-buckling analysis of shells of revolution.

-S

as the lowest load at which either axisymmetric collapse or nonsymmetric

bifurcation occurs from the axisymmetrically deformed prebuckled state.

This is analogous to the approach taken by Koiter for the axially compressed

322



cylindrical shell 343]. It was used by Hutchinson [ 393], Tong and Plan

[ 394] and Bu-hnell [ 3951, who included nonsymmetric bifurcation buckling

"in their nonlinear analysis of the axisymmetrically imperfect shells, and

"by Bushnell [ 396], Koga and Hoff [ 397] and Kalnins and Biricikoglu [ 398],

who did not.

3) A general imperfection shape has been assumed and collapse loads calculated

from a "brute force" numerical analysis based on two-dimensional discretization

of the structure. This is the approach used by Kao and Perrone [ 399].

Governing Equations for the Asymptotic Post-Buckling Analysis

The purpose in this section is to show how general equations governing the

asymptotic behavior of an imperfect structure with simultaneous bifurcation

buckling modes are developed. The imperfection is expressed as a series

expansion of the buckling modes. Here the derivation of Hutchinson [ 393]

is closely followed. It is based on Koiter's general theory for multimode

buckling [ 15, 298]. The notation used here was introduced by

Budiansky and Hutchinson [ 303] and is used in the papers [ 304] and [ 300].

Briefly, the aim of the derivation is to generate a set of simultaneous

nonlinear algebraic equations, such as those for the cylindrical shell,

Eqs. ( 110), in which the magnitude of the externally applied load X is

related to the undetermined amplitudes ti' i = 1, 2, . . N of the N simul-

taneous buckling modal displacements and the known amplitudes 1 i 1, 2.. N
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of the N components of the initial imperfection. These equations are

asymptotically exact at the bifurcation point of the perfect shell and are

reasonably accurate in the early post-bu,&ling regime. The derivation

represents an application of the principle of stationary Potential energy

in which equilibrium of the imperfect structure is determin~ed by setting

equal to zero the first variation of the potential energy with respect to

each of the independent unknown coefficients, Ei"

In the following, a, e, and u denote stress, strain and displacement fields,

respectively. For example, for a shell of revolution a might represent the

vector [N1, N2 , N12, M1 9 M12 ] in which N1, N . . etc. are the stress1 9 121'1 2'

and moment resultants; c might represent the vector [e, eK K
1 2eI e12 ' K, 2' 12

in which el, e2 , • . . etc. are the reference surface strains, changes in

curvature, and twist; and u might represent the vector [u, v, w], in which

u, v, and w are the displacement components tangential and normal to the

reference surface of the shell. The magnitude of the applied load is X,

"". :and all loads on the structure are assumed to vary proportionally.

Hutchinson [ 393] writes the potential energy in the compact form

PE = i{as} _ XB (u) ( 149)
2 1-

The {a,e} represents the internal virtual work of the stress field a acting

through a strain field e, and XBI(u) is the work done on the structure by

the applied force field of magnitude X. acting through a displacement field u.
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Examples of the expressions of the type k i"49) specific to shells of

revolution are given by Eqs. ( 79), ( 87), ( 98), and C 99) in Ref. [430].

Hutchinson [ 393] considers structures the behavior of which can b., adequately

described by nonlinear strain-displacement relations of tle form

E L (u) + L ( 150)
1 22

in which L1 and L2 are homogeneous operators that are linear and quadratic,

respectively, in u. An example for shells of revolution is given by Eqs. ( 90)

with ( 91) of Ref. [430] and below.

The stress-strain relations are assumed to be linear and may be written

symbolically as

a = HI() ( 151)

Equation ( 140) provides an example of such a relationship applicable to

shells of revolution.

Let the initial imperfection be denoted u. If there are no residual stresses

associated with the initial displacement field u, the strain consistent with

the relationship ( 151) may be expressed in the form

C s(u + u) - C(u) = L1 (u) + L L2(u) + L1 1 (uu) ( 152)
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where L1  (u,u) L L1 (u,u) is a bilinear operator of u and u which appears

in the identity

L2 (u +u) =L (u)+2L (u ,u) + L(u) (153)

*.For example, L can easily be derived for a shell of revolution with an

-.- ~ imperfection having only a normal displacement component w. Replacing

Sand ýP on the right-hand side of Eqs. (90) of Ref. [430] by +ýand ~p+

we obtain

C (u+u) L (u) + 1L (u) + L (u'u) + 6(u
.- °2 2 11

2 2pY
e U +r v/r) +* e12  (14K'2 0

2'- hr LII/r(u'u) 2 l(,)i iiea prtro n

2K2 2-/r + ur'u/r + v'/R2  7

m ~ ~~in th dniywhichaper

1' 2

12 155

+ 1 +

2K -(X.-- + •- + v' 0 rv r a

-" ~ i wehbtich

""a wu' + /rI ;*/ vR2 y

•~ ý/U u'r /R2 v+ -2 r'/

* and

W?'wr; .y ( 156)
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The last term on the right-hand-side of Eq. ( 154) is to be dropped because

it is assumed that the imperfection is associated with zero residual stress.

Returning to Hutchinson's derivation[ 393], we assume that the displacement

of the structure can be expressed in the form

N
(n)XU 0 +n nUc + (157)

n=l

in which Xu is the prebuckling displacement of the perfect structure at the
0

(1) ((N)
load X; uc , u) . . . uc are the N linearly independent buckling modes

associated with the lowest critical eigenvalue X ; and ii is an additional

displacement of tI-e form

"N N

= a 1: ýnZmunm + higher order terms ( 158)
g n=l m--l

in which7T is orthogonal to the buckling modes u (1) u(2) . . u(N) The

orthogonality condition, in the notation given in Eq. ( 149), is

{a, L (Ui), u())} 0 i # j ( 159)

09 c

where

a H [Ll(Uo)] ( 160)
0 o 1 1
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Imperfections are taken in the form of the N critical bifurcation buckling

modes

N

= j nUc ( 161)
n= 1"-n=l

"With use of Eqs. ( 151), ( 152), ( 157) and ( 161) and the orthogonality

condition ( 159), the potential energy expression ( 149) can be written

in the form

PE = (constant) +1 -Ac) X o' LUi)

+ 2{ 1j ýic L2 (Diuci) + D i {%'9 L 2 (u i))

4 -Z2
"'+ terms of order 4 ,.2 (162)

in which it is assumed that the summations span the N simultaneous critical

"buckling modes and

H-[(i) (u 163)

The additional displacement fi [Eq. ( 158)] does not appear explicitly in

Eq. ( 162) because it contributes to quartic but not cubic terms in the

The pctential energy in the truncated form ( 162) leads to accurate prediction

of the behavior of the structure provided that the amplitudes of the buckling
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modal displacements 4. and of the initial imperfections 4i are sufficiently

"small as to insure that the terms L-eglected are small compared to those

retained.

'4.

Equilibrium equations relating the 4. to the load parameter X follow from

the requirement that

d(PE)/64i = 0 i = 1, 2, . . . N (164)

These equilibrium equations are obtained from Eq. ( 162) and are given by

S(n)(n i4.(l- X/X ) + [{E n''Lunc ))}

1 c n 4nc , 1  -nc , i

+ 2{s(i)c L 2( u(n). /( 9 { L 2(ui)}) = (W/c )Ci

i = 1, 2, . . . N (165)

Finally Hutchinson gives an expression for the generalized load-deflection

relation for a perfect structure which has multiple critical bifurcation

buckling modes:

~ (n)
Bl(u) 2 {o,L2 (ucn))}1X 1 E 2 c 2c 166)

b1 (XU) A 2 n (c0c n Xc{ao 'J1 (uo}

c o0 1 o

where, from Eq. ( 149), Bl(u) represents the generalized displacement through

which the external loading system acts. For example, for a cylinder under

sp ....
axial compression B (u) would be the end shortening and for a clamped spherical
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cap Bl(u) would be the volume displaced between the undeformed and the deformed

"cap. In Hutchinson's shallow shell analysis [ 393] the generalized displace-

ment B1(u) is taken as the average normal deflection wave

Application to a Shallow Spherical Segment

"Classical Buckling Analysis: Hutchinson [ 393] uses shallow shell equations

*" . of the type ( 81) and ( 82), simplified for application to isotropic

monocoque shell wall construction, to obtain the buckling modes u (i)
c

i = 1, 2, . . . N. With the assumption of membrane prebucklin,, oehavior, the

shallow shell equations in Cartesian coordinates (x,y) yield a critical pressure

2EP• _'2E h

2 1/2 (167)
[3(l -V

associated with any combination of wave numbers k , k which satisfy theSany

"equation

"2" 2k2 21/2

k 2 + = q 2 [12(l-v 2)] 1/2(R/h) ( 168)
x y 0

"This critical pressure, obtained from shallow shell theory, is the same as

that for a complete sphere calculated by Zoelly [ 387] and van der Neut

388]. It is associated with the modal normal displacement field w(x,y)

and stress function f(x,y) given by

w(x,y) -cos(k ~)Cos (k Y)x R y R
(169)

f(x,y) = -EhR (k 2 + k 2 )- c..:s(k •) cos (k X)
x y x Ry R
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post-Buckling Equilibrium Patns: Hutchinson [ 393] investigates the two

types of modal interaction that occur in this case. If one of the modes is

prismatic (varies in only one coordinate direction) only two modes interact:

the prismatic mode and a single two-dimensionally varying mode. Otherwise

sets of three two-dimensionally varying modes interact. The two-mode

.- interaction leads to the greatest degree of imperfection sensitiiity. Only

this type will be described here. The reader is referred to Hutchinson's

paper [ 393] for a description of three-mode interaction.

"The general equations ( 165) can be specialized for application to shallow

spherical caps modeled in the Kgrmin-Donnell or Marguerre W-F notation.

For the two-mode case the first generalized buckling modal vector field

u () is identified with the prismatic mode

"wM = h cos (q x/R) 170a)
c 0

with the associated stress function

f(l) - -(ERh 2 /q ) cos (q x/R) ( 170b)
c 0 o

Of all the modes that satisfy Eq. ( 168), Hutchinson [ 393] shows that

only the mode with k = qo/2, and therefore k = /V q/2, will interact withx y'

wc fcl). Therefore, the second generalized buckling modal vector field

(2) (2) (2)
uc in Eq. ( 165) is identified with the set w2c f c given by

331



-. .

(2)
w h sin(q x/2R) sin(v/ i qoy/2R)

C "0 0 0

=-(ERh /a2' sin(a x/2R') sin(v/" q 171))

Hutchinson shows thac use of Eqs. ( 170) and ( 171) in Eq. ( 165) leads

to two equilibrium equations for P1 and •2 in terms of the external

pressure p of the form

9/ ~ 2 1/2 2 (/
-• [3(1 - V 2 ] 2 I

N.( 172)
1 9 2 1/2 =

/9- p/c)•2 - [3(1 - 2)] 2 (p/p

in which the - in Eq. ( 1D2) are dimensionless modal and imperfection

""amn: tudes normalized by the shell wall thickness h.

'From Eq&. ( 172) iL is easily seen that the early post-bifurcation state of

a perfect shell ( = 2 = 0) is governed by

8 p

(173)
v .,-•2 = + cP c

2 1/

-':. i wichc -[31* (21j

in which c [3( v . This behavior, sketched in Fig. 290, is

"characteriscic of a "quadratic-type" structure and has been discussed by

Koiter [ 15, 298] for the general case. As with the axially compressed

cylindrical shell, the equilibrium load in the postbuckling regime is greatly

reduced even where the buckling deflections are only a small fraction o.

* 4 the shell thickness; i.e., ' and •2 a small fraction of unity. The curves

F.• 32

332



I for the perfect spherical shell are analogous to those in Fig. 259a for the

perfect cylindrical shell under uniform axial compression.

The generalized load-deflection relation valid in the initial postbuckling

"region is calculated With use of Eq. ( 166). The generalized displacement

"B 1(u) in this case corresponds to the average normal displacement, Wavg of

the shallow section. Equation ( 166) becomes

+ 16 P- )2avg p._+ _ 174)

w0 Pc 27(l- v) P- - c c

in which

S0 __ -__

w ( 175)c 3(1 + v)

is the prebuckling normal displacement at the bifurcation pressure, pc.

An imperfect shell deflects in the buckling modes with the first application

of external pressure. The behavior for the prismatically imperfect shell

( = 0, 1l > 0) is also exhibited in Fig. 290. Prior to buckling, the

load increases with deflection in the prismatic •l-mode with

Ei = 1 - P/pc 176)

until the coefficient of 2 in Eq. ( 172b) vanishes. At this point, bifurcation

occurs. Following bifurcation, the equilibrium pressure falls with deflections
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occurring in both modes; thus the maximum (buckling) pressure, denoted by

p*, is the bifurcation pressure which satisfies

i 9c p ( 177)

Equation ( 176) represents behavior for an imperfect structure the perfect

version of which is neutrally stable in the early post-bifurcation regime.

(See Fig. 8a). It is this behavior upon which the construction of

Southwell plots is based, more about which will be written later. The curves

displayed in Fig. 290 for the prismatically imperfect shallow region are

analogous to that for the axially compressed cylinder shown in Fig. 261 and

labeled < < O 2 = 0. As depicted in Fig. 291, small imperfections

(relative to the shell thickness) result in large reductions of the buckling

pressure.

If gl = 0 but •2 # 0, the maximum value of p does not correspond to bifurcation

but is a limit load of the type shown in Fig. 260. The limit load p* is

"obtained by substitution for F, in terms of •2 from Fq. ( 172a) into Eq.

172b) and determination of the value of p such that dp/d = 0. One finds

.... _ p)2 27 •i•'c p*
""P = 32 121 P( 178)

This formula is also plotted in Fig. 291, from which it is seen that an im-

perfection in the form of the E2 -mode causes a slightly greater reduction in

:'"-22
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"the load-carrying capacity than an equal imperfection in the •l-mode. Also

plotted in Fig. 291 is the imperfection sensitivity curve for the case in

which these modes interact. This curve is a plot of the equation

6"16V-." i -p*pc2 •9c
( = /3 (p*/p) ( 79)

which is derived in [ 393]. Load-generalized-displacemenc curves for the

- two types of modal interaction are exhibited in Fig. 292.

Special Theory vs. General Theory: Figure 293 displays imperfection

sensitivity curves for the shallow spherical region analogous to the curves

in Fig. 262 for the axially compressed cylindrical shell. The curve

labeled "General Theory" is plotted from Eq. ( 177); that labeled "Upper

Bound Calculation" is derived from an analysis completely analogous to that

described in connection with Eqs. ( 104- 109) and Eqs. ( 119- 122). The

results represent an upper bound because the assumed displacement function

is kinematically admissible, the compatibility equation is solved exactly,

and the resulting expressions for the normal displacement w and the stress

function f are used in the equilibrium equation, which is solved approximately

by the Galerkin procedure. Hutchinson gives some details in Ref. [ 393].

Difficulties Encountered in the Asymptotic Analysis of Complete Spherical Shells

Vr Although the prebuckling behavior of a complete spherical shell is simpler

than that of a spherical cap, a practical asymptotic post-buckling analysis
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according to Koiter's general theory [ 15, 298] is rendered extraordinarily

difficult by the fact that a cluster of buckling modes exists at a critical

presbure very slightly above the lowest critical mode. These higher modes

"interact with the lowest in the early post-buckling regime, leading to a

S-. requirement for a higher order asymptotic approximation than that needed for

other types of shells. Figure 294 shows load-generalized-displacement

curves predicted by Koiter [ 390] from various asymptotic analyses. The

S.curves labeled "first approximation" are valid only for post-buckling displace-

ments w/t of order 1/n, where n is the order of the Legendre polynomial correspon-

ding to the critical buckling mode (usually a high number; n = 16 for R/h 82).

The first-approximation behavior corresponding to axisymmetric post-buckling

deformations was computed also by Thompson [ 400]. Koiter [ 390] found that

a second-order asymptotic approximation with the assumption of an axisymmetric

- imperfection and axisymmetric post-buckling deformations leads to a load-

deflection curve very similar to Hutchinson's two-mode case (Figs. 292,

•-" -294), but the sensitivity of the maximum pressure p* is somewhat less, as

Sshown in Fig. 295.

Nonlinear Numerical Studies

Figure 295 displays, in addition to imperfection-sensitivity curves predicted

from asymptotic analyses (Koiter, Hutchinson), several curves generated by

nonlinear numerical studies in which spherical shells and caps are assumed to

contain axisymmetric imperfections of various geometries. The critical

- limit loads p* are calculated by incremental analysis in which the deformations
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of the shell in a shallow region are expanded in suitable series or calculated

from finite difference or finite element discretization. Kaplan [ 37] dis-

cusses these results in more detail. Figure 296 shows the same kind of data,

except that Koga and Hoff's result [ 397] is compared with a curve from a

finite element elastic analysis by Tong and Pian [ 394] and an asymptotic

elastic-plastic analysis by Hutchinson [ 313].

Figures 297, 298, and 299 show a load-generalized-deflection curve and

pre- and post-bifurcation axisymmetric deformations computed by a Ritz

method for a shallow cap by Bushnell 4011. The geometry of this cap

2
(X = 200) is such that further increases in the cap depth parameter A would

not change the post-buckling behavior much. As seen from Fig. 299, an

axisymmetric dimple at the pole grows as the pressure falls on the post-

buckling unstable branch. This result was later confirmed by Koiter's second

approximation asymptotic analysis [ 390], results from which are displayed

in Fig. 294.

Other Asymptotic Imperfection Sensitivity Analyses

For Doubly-Curved Shells of Revolution

Spherical Caps with Axisymmetric Loading Over Part of the Surface

Results of Fitch and Budiansky [ 391]: A sketch of the configuration is

-i shown in Fig. 300. Fitch and Budiansky [ 391], basing their analysis on

the nonlinear shallow shell theory of Marguerre [ 392], used an asymptotic
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post-buckling analysis analogous to that developed for the axially compressed,

barreled cylindrical shell in Eqs. ( 81- 103) for which the critical

buckling mode is unique. Inclusion of nonlinear and nonuniform axisymmetric

prebuckling deformation, as set forth by Fitch [ 348], Cohen [ 3491, and

Hutchinson and Frauenthal [ 346] [see Eqs. ( 102) and ( 103)] is essential

for accurate prediction of the initial post-buckling behavior of the perfect

shell and hence for accurite prediction of its asymptotic sensitivity to

initial imperfections. Fitch and Budiansky [ 391] calculate post-buckling

factors b [Eq. ( 73)] and slopes a (Fig. 301) of the post-bifurcation

load-generalized-deflection path at the bifurcation point of the perfect cap,

* but they do not give the load-carrying capacity ps as a function of imperfection

amplitude 6/t. Figures 302 - 304 show some of their results. Spherical

caps with concentrated loads have stable bifurcation behavior, as indicated

by positive b in Fig. 302. For a distributed load corresponding to

(Fig. 303) less than 2 the post-bifurcation behavior is stable. For

2 < X • 4.8 there is no bifurcation; the critical load corresponds to axi-

symmetric snap-through. For X > 4.8 bifurcation buckling occurs before axi-

symmetric collapse, but the coefficient b is negative, indicating sensitivity

of the load-carrying capacity to iniLial imperfections according to Eq. ( 102),

* which Fitch [ 348] gives in the form

(1 -ps/Pc)3/2 -3(3)/2 /2 i ll-(1 - =/ (-b) (180)
sc 2 Pc B2 (Ul)

"In Eq. ( 180), JSlell denotes the same operation as the term in brackets in

"Eq. ( 149), subscript c indicates "evaluated at the bifurcation point," and

3
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S1 H (eI + Lll(uul))

e1 ~L(u 1)- . ( 1 8 1 )
B(u' L2 (U) + {2aI,LII(U',ul)}1

Cl, H1 (e1 + L1 1 (UcuI))

The HI, LI, L2 , and LII appear in Eqs. ( 150- 154). The terms with subscript

one (except for the funccionals LI, LII, H1 ) denote bifurcation buckling modal

"quantities; the terms with bars a , u indicate prebuckling quantities evaluated
c c

"at the critical load p; and ( " signifies the derivative of ( ) with respect

to the load parameter p. Unfortunately, Eq. ( 180) is not plotted for any

y-,- of the examples in Ref. [ 391]. The critical pressures pc plotted in

Fig. 303 (ordinate for X > 2) and Fig. 304 are normalized by the buckling

pressure of a complete spherical shell, Eq. ( 147).

"In Fig. 303 the asymptotic limit as X - corresponds to X/X 0, whereas

in Fig. 304 the limit as X +- corresponds to /IX 1.0.

"Questions Raised by the Results Shown in Fig. 304: The asymptotic results

shown in Fig. 304 raise some significant questions. Superficially it appears

from the asymptotic value b = -1.19 and the similarity of the formula ( 180)

to that valid for a membrane prebuckling state [Eq. ( 146)] and the curves

sketched in Fig. 250, that the critical external pressure of a spherical cap

is just as sensitive to imperfections in the form of an edge buckle (see

Fig. 68) as is the complete spherical shell to imperfections in the form of

3
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an axisymmetric dimple or zonal harmonic (Hutchinson [ 3931, Bushneli [ 395,

"3961, Koiter [ 390], Koga and Hoff [ 3971, Kalnins and Biricikoglu [ 398],

"Tong aLid Pian [ .394]. and Figs. 295, 296). This may be so for extremely

small imperfection amplitudes but is probnbly not the case for actual spherical

caps with average imperfections.

Figure 305 is offered as an aid to explain why. The load-deflection curve

for perfect complete spherical shells and rather deep caps (large X) have been

established theoretically by Bushnell [ 401], Koiter [ 390], and Hutchinson

393]. Such a curve, other examples of which are displayed in Figs. 292,

294, and 297, is indicated by the heavy dashed line in Fig. 305. The post-

* buckling portion of this curve corresponds in the analyses of Bushnell [ 401]

" and Koiter [ 390] to growth of an axisymmetric dimple as shown in Figs. 298

and 299, and in the analysis of Hutchinson [ 393] to growth of deformations

in two interacting modes given by Eqs. ( 170a) and ( 171a). Also showi. in

Fig. 305 is a postulated post-buckling load-deflection curve of a perfect

cap corresponding to growth of the critical nonsymmetric edge tuckling mode.

The collapse pressure p of imperfect spherical zaps thus depend on the shapes

of the imperfections. If an imperfection resembles a flat spot or a local

dimple which commonly occurs in spherical shells [ 402], then the value of ps

will be governed by the curve labeled "Imperfect Cap with Initial Local Dimple"

in Fig. 305. Even though the bifurcation pressure pc (cap) corresponding to

edge buckling of the perfect cap is about 20% lower than the value pc (sphere)

corresponding to buckling of the perfect cap in the classical Legendre mode

n. •Fig. 68), the collapse pressure p of the imperfect cap will be determined by
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*• growth of the dimple, that is, by growth of a deformation field proportional

to bifurcation modes higher than the fundamental edge mode.

If the imperfection is proportional to the nonsymmetric edge zone buckling

mode, then the value of p will be governed by the curve labeled "Cap with

In-tial Nonsymmetric Edge Zone Imperfection," which displays a much smaller

drop from p c (cap) because of the postulated high minimum post-buckling

. pressure of the perfect cap "forced" to deform in this edge mode. A general

- imperfection will contain harmonics of both the dimple and the edge mode type,

but it is the dimple component that essentially determines the maxirum load-

carrying capability ps.

It may be that for very small imperfections the imperfection sensitivity as

"calculated from Eq. ( 180) is as great as that shown by the dashed lines in

Fig. 250(b) and by the numerical and asymptotic results displayed in

"Figs. 295 and 296. Thus, an analyst may calculate maximum pressures ps

from the asymptotic theory of [ 391] which agree with tests on specimens

with large depth parameters X. However, it is felt that because of the post-

buckling behavior hypothesized in Fig. 305. such agreements between test

and theory would be fortuitous.

The argument just presented and Fig. 305 might be applied equaJly well LO

axially compressed cylindrical shells. With boundar conditions ignored,

the asymptotic post-buckling theory leads to a prediction of e.&Ereme sensi-

tivity to initial imperfections because of the interaction of the multiple

critical mcdes in the post-buckling regime. However, when boundary effeccs

are included in the model, the lowest eigenvalue becomes unique, and the

asymptotic imperfection sensitivity analysis is thus based on the b-factor
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method, with early post-buckling deformations being proportional to an edge

"zone buckling mode similar to that shown in Fig. 62. It is reasonable to

expect that even if the post-bifurcation behavior in the immediate neighborhood

of the bifurcation point should indicate extreme imperfection sensitivity

corresponding to edge zonal buckling, very early in the post-buckling regime

- other modes corresponding to classical buckling (which are aozociated with

bifurcation points some 8% to 15% higher tnan the fundamental edge mode) would

interact in a nonlinear way with other impeLfection components, leading to a

substantial reduction in the maximum load-cdrrying capacity, ps.

Nonsymmetrically Loaded Spherical Shell

iigures 86 and 87 show large spherical tanks used for marine transport

of liquid natural gas and prebuckling and bifurcation buckling behavior of

such a tank partially filled with LNG. Buckling is caused by hoop compression

that develops as the doubly-curved surface is subjected to axial tension

(See Figs. 83- 85). If the ship is rolling at sea, the tension loading

due to the weight of the LNG will no longer be axisymmetric, as indicated in

Fig. 87, but will be tilted at some angle with respect to the support, as

shown in Fig. 306. For this problem Pedersen and Jensen 1 112] determined

.*. for seveial loading conditions the asymmetric, non-linear prebuckling defor-

e0 mations, an approximate bifurcation mode, and the corresponding initial post-

buckling bchavior. Goo, correlation with small-scale tests of such partially

filled tanks was obtained by Pedersen and Jensen [ 403].

342

h .-



Initial Post-Buckling Behavior of Toroidal Segments

Hutchinson [ 4041 applied Koiter's general theory to shells of the geometries

shown in Fig. 307 loaded by lateral pressure, hydrostatic pressure, and axial

tension. Consideration is restricted to segments which are shallow with respect

to the axial coordinate, that is 1/r << 1. The analysis is based on shallowx

"shell equations of the type 81- 83 for isotropic shells and the prebuckling

"state is assumed to be characterized by - linear membrane state N , N which
xo yo

is uniform over the entire shell. Classical buckling loads, factors b

[Eq. ( 73)], and initial slopes of post-buckling load-generalized-deflection

paths of perfect shells are plotted for various ratios r /r (Fig. 307) as".'• y x
"'•' parame2e1/2 2 rh

functions of the shell length parameter Z = (1 - 12 2/(r h). Given the

imperfection sensitivity paramcter b, the load-carrying capacity X or p
-r

is calculated from Eq. ( 146), except for the case r /r = 1 and uniform
y x

* hydrostatic pressure (externally pressurized spherical shell), for which the

lowest bifurcation mode is no longer unique. Hutchinson's results are shown

in Figs. 308- 310.

"Limitations of Asymptotic Imperfection Sensitivity Theory

The analyst should be aware of the following limitations of the theory of6

imperfection sensitivity just described:

1. It applieq only if the imperfections are of small amplitude (less than

4| the shell wall-thickness) and only in the immediate neighborhood of the

bifurcation point on the load-deflection curve of the Derfecz she1 l.
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2. The assuwption is made that the growth of the postbuckling displacement

* -. distribution is proportional ti the lowest buckling mode of the perfect

shell, if this mode is uniquc°.

"The effects of these limitations have already been illustrated by some examples.

In the immediate neighborhood of the bifurcation point the post-buckling

behavior of an axially compressed perfect cylinder of elliptic cross section

may exhibit the same type of imperfection sensitivity as a circular cylinder.

(See Figs. 57, 271, for example.) Hence, the use of the imperfection

sensitivity factor b with Eqs. ( 75) or ( 146) would lead to a prediction

"- of failure of an imperfect shell well below the bifurcation point A in Fig. 5ý

In its postbuckled state, however, this shell can carry more load than tne

bifurcation load. Therefore, a design based on conventional imperfection

sensitivity theory, that is, use of the factor b from Fig. 272 in Eq. ( 146),

"might be overly conservative.

We have already emphasized a difficulty associated with stability of structures

which have a unique critical bifurcatior mode and other modes at somewhat

higher loads that are more sensitive to imperfections with components propor-

tional to these higher modes (Fig. 305). It seems likely that imperfection

- components pr.oportional to the lowest buckling mode shape are irrelevant in

these cases for det -. ination of the true load-carrying capability of the

"imperfect structures. Clamped, externally pressurized deep spherical caps

(large geometric pa,:ameter X) and axially compressed monocoque cylindrical[ shells provide common examples of structures for which this problem arises.

"344

".29_--

,." " " ""-" ". -- "-" "- - '"-- -"_ .'..'. -'..'. ~ ~-"."." ,- -" - .* . " - "-. -"""." - - -." " . ."- "-" " ." "- " *ty " . , .p "*** _



"Imaginae the difficulty of judging the relevance of the lowest buckling loads

and modes in a complex practical shell structure! One might have to calcu-

late many buckling modes and associated imperfection sensitivity factors to

determine which leads to the minimum peak load of an imperfect shell. More

.° o-computer time could be involved than in a complete two-dimensional nonlinear

-J" analysis.

"Bifurcation Buckling with Stable Post-Buckling Behavior

Figure 271(b,c) illustrate two types of bifurcation buckling with stable

"post-buckling behavior. In one (b) the initial post-bifurcation behavior

is unstable, but equilibrium states at higher loads exist in the far-post-

buckling regime. In the other (c) the initial post-bifurcation behavior is

stable. We have already seen many examples of stable post-buckling behavior,

including axially compressed columns (Fig. 9), plates (Fig. .15), and non-

circular cylindrical shells ( 57, 58). Internally pressurized torispheri-

cal and ellipsoidal vessel heads are also stable in the far post-bifurcation

regime, as described in the discussion associated with Fig. 90, 96, and

103. Additional examples are introduced in this section.

Spherical Shell with an Inward-Directed Point Load

Figures 302 and 303, which are based on nonlinear prebuckling theory and

a Koiter-type asymptotic imperfection sensitivity analysis, demonstrate that

spherical caps subjected to inward-directed concentrated loads exhibit stable

initial post-bifurcation equilibrium paths. This result is confirmed by tests
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"405, 406]. Figure 311(c) shows load-deflection curves from test [ 405]

and theory [ 1111 for a spherical cap with an inward-directed point load.

There are points on the theoretical primary load-deflection curve labeled

"Bifurcation into 4 Waves" and "Bifurcation into 5 Waves". On the test curve
0 ".

loads are identified for which nonsymmetry of the deflection pattern was first

observed. It is easy to perform a table-top experiment to confirm qualitatively

the results shown in Fig. 311: puncture a ping-pong ball to allow air to

"enter and leave freely. Then gently push the tip of a rather blunt pencil

perpendicularly against some other point. You will notice that for small

loads the dimply is axisymmetric but that as you continue to increase the

load the growing dimple gradually assumes a triangular pattern. The bifurca-

"tion point corresponds to the load for which a nonsymmetric pattern begins

"to superpose itself on the axisymmetric dimple. By the time you notice the

nonsymmetry, the shell is in its postbuckled state. Figure 311(a) illus-

"trates such a state.

"Subject to a concentrated load, the spherical shell is stable in the post-

buckling regime, just as the axially compressed pear-shaped cylinder shown

"in Fig. 58 is stable for loads above the lowest bifurcation load. There is no

sudden release of stored-up membrane energy because much of the prebifur.-a-

tion strain energy has been stored in a bending mode. The gradual growth
0

of the nonsymmetrical pattern in the point-loaded spherical cap is due to the

"gradual building up of the circumferential compressive stresses in a small

".. sector fairly near the load. Predicted axisymmetric prebuckling deformations

and the critical bifurcation mode for a very thin spherical shell are displayed

in Fig. 311(d).
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Stable Post-Buckling Shearing Deformations

Wagner Beam: Figure 312 shows part of a beam consisti.ng of a thin sheaif

* *. web capped by T-shaped flanges and reinforced by vertical angle stiffeners.

-Q The beam is supported by blocks at its ends and subjected to vertical loads

that cause it to bend, stressing the thin web in shear and causing the

formation of diagonal buckles as displayed in Fig. 312(b). rhe bifurcation

buckling stress of the panels between vertical stiffeners is given by

Tc K(t/b) ( 182)

in which the value of K is dependent upon the panel dimensions and the con-

* ditions of edge support, t is the thickness of the web and b is its minor

dimension. Curvature causes an increase of the critical stress levels. The

formula for such cases can be written in the form ( 182), with the value K

now depending on the ratio of b 2/Rt where R is the radius of curvature, as

well as on the other parameters.

In the design of aircraft structures, in which the requirement of low weight

leads to beams with very thin shear webs, the bifurcation stress Tc given

by Eq. ( 182) corresponds to loads far below that at which the structure

fails. Therefore, it is necessary to ascertain the stiffness and strength

of the beam with the web in its post-buckled state. In this state the

shearing forces at the flanges are reacted in the wrinkled web by liagonal

tensile stresses acting parallel to the buckles. This dtagonal tension field

tends to pull the flanges tcgether. The main purpose of the vertical angle

* Liffeners is to hold the flanges apart, thus maintaining the moment of

inertia required to carry the bending moment in the beam. The beam with
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the deeply post-buckled web is called a Wagner beam, after the man who first

analyzed such a structure. He modeled the web as if it were replaced by a

diagonal tension field [ 407].

"Computerized Analysis of a Complex Stiffened Curved Panel Under Shear: The

effective stiffness of buckled shear panels has traditionally been estimated

semiempirically [ 408]. With advanced computer programs it is now possible

to calculate the post-buckling behavior of such panels rigorously. Figure

313 shows a curved, stiffened panel which was analyzed with the STAGS com-

puter program [ 409]. The panel was subjected to imposed displacements at

the corners A and B. As the imposed displacements are increased, the six

subpanels buckle but continue to carry load. Contour plots of normal displace-

* ment are shown in Fig. 313, with solid lines indicating outward and dashed

lines inward buckles. The modified Newton method was used, with 198 displace-

ment increments and 35 refactorings of the stiffness matrix being required to

reach a displacement slightly in excess of the ultimate imposed displacement,

which was provided as a given value. According to this numerical analysis,

the effective shear moduli of the buckled subpanels ranges from 36 to 48 percent

of that of the unbuckled sheet. The discrete model contained 21 rows and

58 columns, corresponding to a total of 4230 degrees of freedom and a stiffness

matrix bancdwidth of 478. The computer time required on the CDC 6600 was

3.73 hours.

Wrinkling of an Antenna Membrane: This problem resembles the Wagner beam model

" in that a diagonal tension field develops in the post-buckled (wrinkled)

-- membrane. During the final stages of deployment of an unfurlable parabolic

antenna, such as depicted in Fig. 314, the antenna mesh stretches and causes

• loads to be applied to the ribs. It is of interest to determine if the loads
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in the mesh might cause the mesh to tear, or if the reactions where the mesh is

attached to the ribs are sufficient to buckle the ribs, preventing the antenna

-'. from reaching its fully deployed state. An adecuate analysis of this problem

requires accounting for the forces applied by the mesh to the ribs when the

mesh is partially wrinkled.

Figure 314 shows a schematic of a ribbed antenna. In the fully deployed

state (a) the ribs are perpendicular to the hub. The study described in

Ref. [ 410] treats the case of static deployment from the tangency point (b)

to the fully deployed state (a). The problem is solved "backwards"

that is, the fully deployed state is the initial condition, and mesh loads

are calculated as the ribs rotate about fictitious attaclhment points on the

hub through an angle of 90 deg. Because all of the ribs are assumed to

rotate by the same angle ý, the analysis of the entire antenna can be effected

by the treatment of a single gore bounded by two ribs, denoted "Rib 1" and

"Rib 2."

In the fully deployed state, the mesh is prestrained biaxially. Part of the

problem involves calculation of the nonuniform prestrain field, given the de-

tails about how the mesh is prestressed and cut to fit over the ribs of the

fully deployed antenna. A uniform prestress before cutting to fit the de-

ployed antenna ribs becomes nonuniform after cutting and attaching to the ribs

because of the relaxation of the mesh along the free circumferences near the

hub and at the extreme radius. These "boundary layer" nonuniformities in pre-

strain can be calculated by application of the Ritz method and linear theory.

349



After the nonuniformly prestrained initial state has been determined, the

rib bending angle, called 3, is increased in constant increments to some

maximum value. For each increment in a the state of strain and stress in

the mesh is determined as follows: A reasonable displacement field is

assumed in the mesh, given the displacements at the rigid ribs. Strains are

calculated from this displacement field and added to the now known non-

uniform prestrains. From this total strain state, stresses are calculated.

The principal stresses are determined. At a given radial coordinate on

Rib 2, if the smallest principal stress component becomes less than zero, a

wrinkle is assumed to form. This wrinkle on forming on Rib 2 is assumed

immediately to propagate across the mesh to Rib 1, thereafter acting as an

* elastic string joining the two adjacent ribs at an angle determined by the

principal stress calculation. In the wrinkled regions, the mesh cannot

transmit shear stresses nor stresses normal to the axis of the wrinkles.

Once a wrinkle forms, it persists for all subsequent increments in (.

Furthermore, it is assumed that the wrinkle continues to join the same two

points on the adjacent ribs. Thus the uniaxial strain a2ong the wrinkle

axis can easily be computed. Given the elastic properties of the equiva-

lent string, the force applied by this wrinkle to the two adjacent ribs

can be calculated.

If the smallest principal stress exceeds zero, then no wrinkle forms, and the

normal and shear stresses in the mesh at the ribs can be computed. The rib

moments, radial forces and shear forces at any radius can then be computed by

integration of the wrinkle forces where wrinkles exist and by integration of
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the normal stress resultants and shear resultants where the mesh remains smooth.

Certain assumptions can be made regarding the load carrying capability of the

"mesh near the interfaces of smooth and wrinkled regions. Figure 315, plotted

by the computer, shows an example of the predicted growth of wrinkled regions

as • is increased. This behavior is exhibited by the model photographed in

"Fig. 316.

Th2 Southwell Method for Determination of

Buckling Loads from Non-Destructive Tests

Definition of the Method

"Previously in this chapter, measured or postulated imperfections have been used

in connection with asymptotic or nonlinear analysis to calculate collapse loads

X s which are often considerably less than the critical loads X calculated from

"classical" theory for perfect shells. The Southwell semi-empirical method is

* . ,a sort of reverse process: measurements of increasing deflections of actual

"* imperfect shells under increasing load are used to obtain "classical" buckling

loads of the perfect idealization of the real test specimen.

Southwell [ 411] originally proposed this clever method for extracting the

theoretical buckling load P of a perfect column from experiments on real
CR

columns with small initial imperfections. Southwell's argument is as follows:

Suppose that an elastic column is not quite straight initially. Let the

initial deflection of the neutral axis be denoted by w. Then the condition

for equilibrium of the bent configuration, based oi small deflection theory,

is given by
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dw + (w + w)= 0
2 (I 1 8 3

)
dx2

in which w is the additional deflection, P the axial force, and E1 the flexural

rigidity of the column.

"Both w and w can be represented by Fourier sine series with coefficients w and
n

"wn, respectively. Substitution of these series into the equilibrium equation

( 183) yields, after rearrangement of terms,

-- w
"w = ( 184)

n Pn

thin which P is the n critical load for the perfect column, only the smallestn

of which (P ) is of practical importance. When P approaches its critical value,

the first coefficient w1 becomes the predominant component of the Fourier

"series expansion of w, and the deflection 6 of the column at its midlength is

approximated by

"6 w wI ( 185)
- Pe

This is the equation of a rectangular hyperbola whose asymptotes are the axis

"of P and the horizontal line P = PCR" Such a hyperbola is shown as the dashedv R*

"line in Fig. 8(a). In terms of ixw variables 6 and 6/P, Eq. ( 185) defines

the straight line

P. - + W( 186)"CR P =

O35.
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Thus, by measuring 6 and P during a column test, and plotting 6 versus 6/P,

one can determine the "classical" critical load P from the slope oF the best
CR

straight line fitted to the test points.

It must be emphasized that the Southwell method is based on small-deflection

theory: the total deflection w is obtained by superposition of terms in the

"series

W= M(i)i ( 187)
(P /P-1)

CR

. The use of small-deflection theory, which results from the linearizing assumption

that the square of the slope, (dw/dx) , is negligible in comparison with unity,

is justified provided the deflections are small compared with the overall

dimensions of the structure. Therefore, the measured deflection, 6, must be

small enough so that small--deflection theory remains applicable yet be large

enough so that w predominates.

The Southwell procedure works very well if the post-buckling characteristic

of the perfect structure represents a neutral equilibrium path, as in Fig. 8(a),

and if the buckling loads _(i) for the different modes are well separated,i%• nd f th buklin lods CR

* as they are for the column and in many cases for flat plates. The only way

to obtain disagreement between the classical buckling load for a column and

the experimental load determined by the Southwell method is to misjudge boundary

* conditions or column stiffness EI., It seems that the Southwell plot may be

r'". useful to establish actual boundary conditions, for example.
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Ariaratnam [ 412] used the Southwell method for predicting in-plane and out-

of-plane buckling of planar frameworks, and Timoshenko and Gere [ 26] suggest

its use in plate buckling experiments, since expressions analogous to Eq. [ 185]

can be obtained. Horton and Cundari [ 413], Horton and Craig [ 414], and

"V Horton, Nassar, and Singhal [ 415] applied the Southwell procedure to a number

of shell buckling problems, including cylindrical shells under various types

of loading, spherical caps, and complete spherical shells. A more extensive

list of references is contained in [ 413]. Donnell [ 416] formulated the

harmonic analysis outlined in Eqs. (184)-( 186) for application to cylindrical

shells.

Examples of Application of the Southwell Method

Figures 317- 322 and Tables 28- 30 give results of application of the

Southwell method to plate and shell structures. Figureb 317- 320 and

- Tables 28 and 29 apply to structures for which the post-buckling behavior

"is neutrally stable (imperfection-insensitive) and for which the classical

bifurcation buckling modes are well separated. Therefore, the Southwell

* ..-. procedure is ideally suited for prediction of the lowest critical load of

the idealized structure. Figures 321 and 322 and Table 30 apply to

" axially compressed cylinders, for which the post-buckling behavior is

symmetrically unstable (imperfection-sensitive, Fig. 8d) and for which the

"cdlssical bifurcation buckling modes are not well separated. In this case,

• the applicability of the Southwell method is limited to fairly small loads

below the classical load and extremely careful measurements of the deflection

"at many points on the shell surface are required in order to obtain a good
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estimate of the coefficient w of the harmonic displacement field which corres-
n

"ponds to the critical component of the imperfection. Table 30 demonstrates

that if the variation of axial Load around the circumference of the cylinders

(shown in Fig. 322d) is accounted for, better agreement between test and

theory results.

Limitations of the Southwell Method

S-It is seen from comparison of the Southwell plots of the neutrally stable

cases (Figs. 317- 320) with those from the unstable case (Figs. 322a-c)

that the former yield more reliable estimates of the classical bifurcation

- buckling loads than the latter. Roorda [ 417] explains why:

"In essence, Southwell's method is based on the neutral charac-

teristic. In the nonlinear theory of elastic stability the post-

buckling behavior is generally not of the neutral type but takes

"one of three forms, depending or. the nature of the nonlinearities

of the system. The possible load-deflection curves are depicted

in Figs. 323(b), (c), and (d), and may be described as the

asymmetric, stable-symmetric, and unstable-symmetric characteristics,

respectively. The corresponding load-deflection curves for an

imperfect system are also indicated on the diagram. These are now

not rectangular hyperbolas but have the perfect equilibrium curves

as asympotes."

"I."
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".Typical Southwell lines corresponding to Lhe four buckling types,

namely neutral, asymmetric, stable symmetric, and unstable symmetric,

are drawn in Figs. 324(a), (b), (c), and (d), respectively. The

initial slope in each case is 1/PcR For the neutral case, this

slope is maintained for all values of 6. For the asymmetric case,

S-the slope decreases as 6 increases in th* positive direction and

increases as 6 increases in the negative direction. For the stable

"symmetric and unstable symmetric cases, the slope decreases and

"increases, respectively, as J6I increases.",

"On the basis of these diagrams, it is now possible to draw certain

conclilions regaiding the validity of the Southwell procedure as the

measured deflections become large."

"For the neutral buckling characteri.stLc chcre is no problem. The

asymmetric buckling characteristic is the most interesting. If in

an experimental structure the imperfections are such that they

"generate a load-deflection curve with monotonically increasing load

[positive deflections in Fig. 323(b)), thet the best straight line

fitted to the exr'rimental points in a Southwoll plot will have a

slope which is less than the true slope at zero deflection. Hence,

"the Southwell procedure would overestimate the critical load. If,

on the other hand, the imperfections generate a load deflertion curve

in which the load reaches a local maximum [i.e., negative deflections

"in Fig. 323(b)], then the Southwell procedure underestimates the

critical load . . A steep i.1eal post-buck]ing curve may give rise

"to a considerable discrepan.y."
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"Similarly, in the case of symmetric buckling characteristics (Fig. 323

c,d) the following conclusion is drawn. The Southwell procedure over-

estimates the critical load for a stable symmetric characteristic and

underestimates it for an unstable symmetric characteristic, regardless

of the sense of the initial imperfections. . . The sharper the initial

curvature in the ideal post-buckling path, the greater the difference

between P and its estimated value." [ 417]
CR

From Figs. 321 and 322(a-s) it is seen that application of the Southwell

procedure to different harmonic components of the displacement fields of the

axially compressed cylindrical shells yield different estimates of the critical

load. While in this case it is easy to choose the Southwell line with the

* highest slope (lowest P CR) as corresponding to the critical load, remember

that the curves in Fig. 321 were generated from a rather elaborate test

set up involving fairly small, easily managed laboiatory specimens. To

extract and rcduce a similar amount of data for actual shell stiuctures to be

"- .used in the field would appear to be impractical. It would be easier to

obtain the critical bifurcation load theoretically from one of the many

computer programs now available. In some cases, such as that corresponding

to Fig. 322(c), the Southwell plot has a very limited linear region. The

slope depends on which points the analyst decides to include when he draws

the straight line.

An important question in a discussion of the Soathwell method is, of what

significance is the classical bifurcation load? Figure 325 shows

schematically load-deflection curves for perfect and imperfect axially compressed

rectangular plates. A very reliable Southwell plot can easily be obtained from
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a plate with a large imperfection because the ryperbolic growth of the lateral

deflection is easily measured, as seen from Fig. 317, for example. However,

the bifurcation load N is of little significance because the plate fails
CR

due te maximum strain at some axial load not at all related to N GR. The plate

with the small imperfection represented in Fig. 325 may fail at a load many

times the bifurcation load. For example, Tennyson et al [ 419] report that

shear panels with b/h of about 300 carried loads of at least 8 t4-- the

classi:al buckling loads. Some panels were cycled to ±ive times the the

bifurcation load 100 times. Test results reported by Booton [ 420] on

buckling of shear plates with b/h of 100 show ultimate loads between two

V.. and three times the classical buckling load. A nonlinear analysis combined

with Tsai's fracture critericn [ 421] predicts reasonably well the ultimate

"load of these panels; the classical bifurcation load has no significance.

"Consequently, the design of flat plates, especially those designed as shear

webs, is not properly based on the bifurcation buckling analysis, but rather

"on a nonlinear postbuckling analysis.

In the case of curved shells, the Southwell procedure is most easily applied

to configurations for which the load-carrying capability is not sensitive to

initial imperfections. However, it often develops that for just these cases

the bifurcation load is of little significance because of post-buckling

strength, as with the axially cimpreessd pear-shaped cylinder (Fig. 58), which

collapses at a load more than twenty times the lowest bifurcation load. The

Southwell procedure applied to imperfection-sensitive structures is difficult

and probably expensive because ot the closely spaced eigenmodes, all of which

grow at different rates, necessitating the use of many control points in tests
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-. and associated automated data reduction. It appears to be more practical

Snowadays to use a computer program to calculate PCR" As mentioned previously,

however, it may be beneficial to use the Southwell method in conjunction

with computer programs to ascertain certain unknown or doubtful physical

characteristics of a complicated structure, such as effective stifine~s ur

boundary conditions. These characteristics would be changed in repeated runs

of the comr iter program until the critical bifurcation load predicted by

"the program agrees with that from the Southwell plot.
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Section 9 -1
"BUCKLING OF HYBRID BODIES OF REVOLUTION

Introduction

By "hybrid bodies of revolution" is meant configurations such as shown in

Figs. 41 and 42 of Ref.[430], in which some paits of an axi- _ietric structure

are modeled with use of thin shell theory and other parts with use of isopara-

metric solid elements of revolution. Bushnell [426] has written a computer

program called BOSOR6 for the stress, buckling, and vibration analysis of

these configurations. Such a computer program is useful for the analysis of

axisymmetric structures with local axisymmetric stress concentrations or the

analysis of foam-supported shells. ý"
'F.•

The stresses and strains for neighborhoods within about one wall thickness of

* - the junction shown in Fig. 41 of Ref. [430] cannot adequately be predicted

with thin shell theory. Therefore, a small region is defined in which the

domain is discretized in two dimensions. Figure 42 of Ref. [430] shows

". other examples in which such a hybrid model might be used for accurate pre-

diction of local stresses and strains.

Equations governing the stress stability, and modal vibration of hybrid bodies
--. ,.'.

-* _.•. of revolution are given in Ref.[430] [Eqs. (209) - (329)]. The analysis is

applicable to bodies of revolution composed of thin shell segments, thick seg-

-ments, and discrete rings. Th- thin shell segments are discretized by the finite

"uifference energy method as shown in Figs. 20 and 21 of Ref. [430], and the

*" thick or solid segments are treated as assemblages of 8-node isoparametric

-.. 360
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quadrilateral finite elements of revolution, an example of which is illustrated

in Fig. 46 of Ref.[4301. Suitable compatibility conditions are formulated through

which these dissimilar segments are joined without introduction of large spurious

discontinuity stresses, as described in the discussion associated with Fig. 49

"of Ref.[430] . in the formulation on which the POSOR6 computer program is

based plasticity and primary or secondary creep are included. Axisymmetric pre-

buckling displacements may be moderately large. The nonlinear axisynmretric

prebiickling problem is solved in two nesred iteration loops at each load level

or time step. In the inner loop the simultaneous nonlinear equations corres-

ponding to a given tangent stiffness are solved by the Newton -Raphson method.

In the outer loop the plastic and creep strains and tangent stiffness are cal-

culated by a subincremental procedure. The linear response to nonaxisymmetric

loading is obtained by superposition of Fourier harmonics (Eqs. (119) of Ref.

[430])

Summary

The purpose of this section is to show some examples in which the hybrid model

is usec for accurate prediction of critical loads corresponding to axisymmetric

collapse or bifurcation buckling. The section opens with a study of ring-

stiffened cylindrical shells under uniform hydrostatic pressure ý which each

ring and small regions on either side are modeled with use of 8-node nuadri-

laterals of revolution. Results from a hybrid model are compared to predictions

such as shown in Fig. 165 in which the rings are treated as discrete

line structures attached at specific nodes of the discretized shell
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Swall reference surface. Next, results are reported for buckling of a

spherical shell embedded in an elastic foam. The case represents a model of

- a flotation materijl proposed for deep submersible vehicles.

*.• The remainder of the section is devoted to a detailed study of an axially com-

pressed frangible joint in a cylindrical shell and in a rocket interstage

consisting of a cylindrical shell joined to the small end of a conical frustrum.

These frangibl, joints are used for the separation of booster stages during

launch of a payload into space. The stages when consumed are separated from

the remainder of the vehicle at joints designed to fracture under forces

generated by the explosion of a primacord contained within a cavity extending

around the circumference at the plane of separation. Proper design of these

joints is difficult because they must e strong enough to carry the launch

loads but weak enough to fracture under the primacord explosion forces. If

the s-parating joint is to fr -ture reliably, it must contain a circumfer.ntial

notch or notches at the roots of which fra,:ture initiates. These notches

, naturally act as stress raisers under launch loads as well. The behavior

of the structure .n the immediate neighborhoods of the notches cannot be

predicted with use of shell theory, and the hybrid model is therefore required

to obtain accurate results. Two configurations are investigated, one in

wAich test and theory are compared for frangiHle joints embedded i% a short

cylindrical shell and the other in which a frangible joint is embedded in a

cylindrical shell a short distance between this shell and a conical frustrum.

The effect of a modification of the joint design on the critical axial load

is demonstrated in the second case, which represents a realistic rocket

interstage.
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mine problems described in these sections of the chapter are complicated in-

deed, involving bifurcation buckling, nonlinear geometric effects, elastic-

plastic material behavior, and changing points of contact between parts of

a specimen. These sections are written in the spirit of a tutorial--a guide-

by-example for the modeling and solution of other complex nonlinear problems

with similar ingredients. To be effective, such a guide must contain many

details and illustrations. The intent here is to demonstrate the applicability

of a rather complex but computationally efficient model to a real design

problem. Particular attention is given to proper formulation of boundary

conditions and contact conditions in both the nonlinear prebuckling and

bifurcation phases of zhe problem.

0. Ring-Stiffened Cylindrical Shells

Under Uniform Hydrostatic Pressure

In 1965 Boichot and Reynolds [ 212] tested to failure many ring-stiffened

aluminum cylinders of the geometry illustrated in Fig. 326. The bottom

part of Fig. 326 shows four analytical models of such a cylinder that can

be treated with the hybrid program, BOSOR6 [ 426]. All of the Boichot and

Reynolds cylinders failed after some of the material had yielded. Some of

"them collapsed axisymmetrically And others buckled nonsymmetrically. Compari-
4

soas between Boichot and Reynold's tests and predictions obtained with

' BOSOR5 [ 47] are shown in Figs. 163 - 167.

One of the specimens, denoted "20-52", buckled nonsymmetrically in a general

insLbility mode with three or four circumferential waves. The dimensions
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of this specimen are given in Fig. 326. Buckling pressures corresponding

"to each of the four analytical models shown in Fig. 326 were obtained

with BOSOR6. In every case the predicted buckling pressure is very close to

5200 psi with a buckling mode of 3 or 4 circumferential waves. The hybrid

- model and prebuckling and buckling modal deformations are shown in Fig. 327.

In the test the cylinder failed at 4595 psi. Here the relatively expensive

.- i hybrid model is not needed. In fact, a "smeared" ring analysis is sufficient.

* The discrepancy between test and theory is caused by some other factcr,

* perhaps a nonsymmetric geometric imperfection.

". Another of the specimens, denoted "25-88", had very thick rings, as shown in

Fig. 328 (a). In the test this specimen collapsed axisymmetrically at a

"pressure of 9450 psi. At this prcssure most of the material was stressed well

beyond thc proportional limit.

" Figure 328 (b) and (c) shows the results of two analyses performed with

BOSOR5 [ 47]. In Model 1 the three rings are treated as discrete and attached

at single node points. This model yields a predicted axisymmetric collapse

"pressure of 8819 psi, underestimating the test pressure by about 7%. Actually

the shell wall is not as free to bend axially in the neighborhoods of these

r-ng attachment points as Model 1 allows. In the Model 2 analysis the

meridional rotations at the top and bottom faces of each ring are constrained

"to be equal. The resulting prediction overestimates the test pressure by

about 5%. The predicLUA axisymmetric failure modes for Models 1 and 2 are

" .. shown in Fig. 328.
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A better approximation of the actual behavior in the neighborhoods of the

ring-shell junctures can be obtained with a hybrid model such as shown in

Fig. 329 The clamped edge area and the rings with neighboring portions

of cylinder are modeled as assemblages of two-dimensional isoparametric

8-node finite elements. These are joined by means of appropriate juncture

conditions to the one-dimensional shell segments. With use of this model

the predicted collapse pressure is 9520 psi, less than 1% above the test

value of 9450 psi. The axisymmetrically deformed shape just before collapse

is shown with exaggerated amplitude in Fig. 329.

Spherical Shells Embedded in Structural Foam

Since the 8-node isoparametric element permits the prediction of thin shell

behavior, as revealed in Fig.43of Ref. 301 ,problems of the type shown in 330

can be handled with BOSOR6. Figure 330(a) shows buckling of a spherical shell

embedded in foam subjected to uniform pressure. Such systems are being

considered for high strength, low density buoyancy materials for deep

bjbmersible vehicles.

Tests have been performed [ 327 ] for failure under external pressure of

configurations such _s shown in Fig. 330(b). The most likely failure modes

are nonaxisymmetric buckling at the equators of the spherical shells

(Symmetry Plane AA in Fig. 330(b)) and fracture due to scress concentrations

in the neighborhoods where adjacent spherical shells almost touch (Symmetry

Plane BB in Fig. 330(b)). Figure 330(c) shows the prebuckling defor-

mations and Fig. 330(d) shows the bucklina mode for the section of structure

denotpA "AA" in Fig. 330(b).
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-." The 4uality of the models and results are better than they appear to be in

Fig. 330 bccause the element shapes and displacements actually vary

quadratically within each 8-node element, not bi-linearly as plotted.

Let p be the buckling pressure of the embedded shell and pcl the classical
cr c

buckling pressure of the shell without the foam. In a test [ 427]

pr/p was 1.135, very close to the prediction from BOSOR6 of pr/P 1.130.

The failure occurred at the equator of one of the embedded spherical shells.

:-._.Z Elastic-Plastic Instability of Axially Compressed

Shells of Revolution with Axisymmetric Frangible Joints

Rockets for launching from earth to space are staged. The stages when con-

sumed are separated from the remainder of the vehicle at joints designed

to fracture under forces generated by the explosion of a primacord contained

within a cavity extending around the circumference at the plane of separation.

Proper design of these joints is difficult because they must be strong

enough to carry the launch loads but weak enough to fracture under the prima-

cord explosion forces. If the separating joint is to fracture reliably,

it must contain a circumferential notch or notches at the roots of which

fracture initiates. These notches act as stress raisers under the launch
0

loads, of course. Instability of the shell with the notched joint embedded

"in it may result from a complicated interaction of load-path eccentricity and

local plastic flow which cannot be predicted accurately unless the regions

in the immediate neighborhoods of the notches are modeled with the use of

"solid elements of revolution. The growth of the regions in which plastic flow
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O- occurs as the axial load is increased cannot be accurately determined from

-'- "shell theory. This local plastification exacerbates the load path eccentricity

caused by the notches. The increased load path eccentricity gives rise to

increased local meridional rotations that precipitate axisymmetric collapse

similar to that shown in Figs. 59- 61 or nonsymmetric bifurcation buckling

similar to that shown in Fig. 81.

In this section two configurations are examined in some detail, one in which

. •test results are available for comparison and the other which represents a

real design problem in aerospace technology. The main purpose for inclusion

of this detailed discussion of a ratner esoteric application is to demonstrate

modeling techniques for structural stability problems tha: involve a compli-

cated interaction of structural parts, plasticity, load-path eccentricity,

and configurations in which shell theory alone cannot lead to an accurate

prediction of failure. Full details are presented in Refs. [ 428] and

I' 429].

Comparison of Test and Theory for a Frangible Joint Embedded in

a Simple Cylindrical Shell

Test Configuration and BOSOR6 Model: Figure 331 shows an experimental

* arrangement and joint configuration. The test panels had a nominal radius

of curvatare of 45 inches and were supported in such a way as to simulate

a complete (3600) cylinder. Loading was applied througb hydraulic rais,

visible at the bottom of Figure 331. 'he right- and left-hand sets of rams

were controlled sucn that axial strain gages on the inside and outside of

the specimen located 2.0 inches from the lower end of the specimen (z = 2.0)

recorded the same strain. This procedure minimizes the bending that can be
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• quite substantial in tests of axially compressed curved panels if such con-

- trol is not used. Each curved panel was mounted on soft aluminum end

. plates so that the axial load was reasonably uniformly distributed along

its circumference.

Three tests were performed in which the frangible joint specimens were

loaded in compression to failure. In one of the tests the steel primacord

"tube shown in Figure 331 was omitted; in the other two tests it was

present. The three specimens were all nominally symmetric abouc a horizontal

plane passing through the roots of the two notches.

* Figures 332 and 333 show one of the failed specimens and a BOSOR6 axi-

symmetric hybrid model of the undeformed and deformed specimen. In this

""- particular model, die specimen is assumed to be loaded by different meridional

moments, Ma -:nd 'tb, at the ends "a" and "b" as well as by axial compression V

at the end "b" (Fig. 332). The magnitudes of the End moments are

established so as to simulate as well as possible test conditions as measured

by inner and outer fiber strain gages at points c and d and the radial

deflection at the inside notch as measured by a radial deflectometer. More

details on this are given in Ref. [ 428].

Shell theory can be used tu iredict the overall deformation of the structure,

"but not to predict the stresses and strains at and near the roots of the

notches. The long solid lines in Figures 332(b) and •33(i) represent

* the reference surfaces of axisy-'metric shell segments The models are chosen

so that shell theory leads to accurate prediction of the behavior at the four

interfaces of the thin shell and solid regions shown in iig. 4.333(b). We

o
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know from principles set forth by St. Venant that these interfaces need

be only an order of a shell thickness away from the roots of the notches.

"Discretization: The BOSOR6 discretized model shown in Figures 334 and

3'5 consists of Segments 1 theough 6 and 9 through 18, which are treated

as thin shell segments and Segments 7 and 8, which are treated as solids of

revolution with use of eight-node isoparametric finite elements. At the

junctures between the thin shell segments and solid segments, the nodal point

displacements are constrained to be related to each other such that the

normal to the shell surface remains straight and normal as deformation occurs.

An alternative model would be one in which the entire structure is treated

with use of solids of revolution and degenerate solids of revolution (Ahmad

"elements , Ref. [430] ). However, use of such a i,-odel would result ir very

high computational costs compared to those associated with the hybrid model

shown here, thereby precluding extensive parameter studies.

Pads: The purpose of the very short Segments 4 and 11, shown in Figures

334(c' and 335, is to provide elastic pads which connect the steel

primacord tube crowns, Segments 15 and 18, to the m.,in a]uminum cylinders,

* Segments 1 and 14. By changing the elastic modulus E of these pads, one

can s aulate a loose fit (small E ) or a snug fit (large E). For example, if

E is very small, very little axial load will pass through the tube. Appli-
p

cation of axial compression V at the end "b" (Fig. 332P will cause the

"frangible doublers to pinch together because of the inward load path

"eccentricity created by the notches, flattening the tube somewhat. On the
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other hand, if E is set equal to the modulus of Segment 1 (aluminum), moreF

axial load will pass through the tube. In this case, whether the tube is

flattened or bulges opposice the doubler notches depends on the relat4--

importance of four forces. Those imposed at the tube crowns by the imain

cylinders, Segments I and 14, tend to cause bulging, and those imposed at the

plane of symmetry of the tube [z = 4.44 in Fig. 334kc)] by the notched

doublers tend to cause flattening.

Material Properties: The discretized imodel is assumed to be composed of three

different materials, aluminum, ste-., and a ffctitious pad material, the

modulus of which is adjusted for the ,',rpose just described. The aluminum

is elastic-plastic with the proDorti-mnz limit at a = 56650 psi and theY

stress-strain curve given in Fig. 347. The material of the steel prlimacord

tube is assumed to be elastic and have significant stiffness only in the

meridional direction (Eltube = 30 x 106 psi, Vtube = 0). Small values

for the circumferential modulus (E2tube = In6 psi) and the shear modulus

(Gtube = 3.8 x 105 psi) are specified in zr,'..- to prevent local spurious

"zero energy" tube buckling modes. The characLerization of the tube mate-

rial as being orthotropic rather than isotropic 4s advisable in this case

because the test specimens were rather short -, the circumferential direc-

tion (about 5 to 11 inches) compared to the cylinder radius (about 45

inches). The primacord tube, tCerefore, does not develop circumferential

stresses that vary around its meridian due to distortion of its cross section,

which would be the case if the tube formed a complete torus. The same argu-

ment cannot 1,c set forLh for the aluminum frangible doA'ers because the

L-ea ot particular interest in this study includes the notCes, the cross-

sectional dimensions of which are very small compared to r -ircumferential

dimensions of the test specimens.
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4 Junction and Contact Conditions Between the Primacord Tube and the Cavity

Provided for It: The primacord tube absorbs some of the axial load and, more

important, counteracts the tendency of the frangible doublers to pinch

together a. axial compression is increased. While a conservative joint

design from the point of view of load carrying capability would result rrom an

analysis in which the tube is neglected, such a procedure would lead to a

notch configuration requiring more energy for separation, with associated

higher shock loads due to primacord ignition. For this reason, and for

good correlation with test results, it is essential to include the primacord

tube in the model.

In the actual frangible joint the st2el primacord tube is not fastened to the

surrounding structure but is simply inserted into the rectangular cavity

provided for it. The snugness of the fit deDends on the tolerances on the

parts. In the BOSOR6 model the snugness of the axial fit is adjusted as

just described. The width of the cross section of the tube is assumed to

match that of the cavity, as shown in Figure 335. Since the tube is not

fastened to the rest of the structure, it is important to formulate proper

contact conditions for stress and bifurcation buckling.

Proper contact conditions for nonlinear stress analysis ar-i formulated in

the following way: A BOSOR6 model is first set up in which it is assur~ed

that the frangible doublers contact the thicKer cylindrical Segments 1 and

14 only at the bolt center lines shown in Figure 334(b), where they are

clamped. The crowns of the tube, Segments 15 and 18, are assumed to con-

tact the pads, Segments 4 and 11, as shown in Figure 335. A small axial

compression combined with moments M and lb is applied and the relative

371



radial displacements w* of the tube, cylinders, and doublers at points of

potential contact are observed. If one segment is observed to move through

,*- another, contact is assumed to occur at the point of maximum relative w*.

A new run is made with the new contacts incorporated, and any further con-

.tact points are identified as before. Such runs are repeated until there

are no further changes in the model.

Figure 335 shows the results of such a procedure. The positions of contact

¾. 7
points depend Dn the snugness of the axial fit. With st-ff pads (Ep = 10 psi),

the tube bulges out at the equators of the toroidal tube crowns (z = 4.16 in.

and z 4.72 in., Fig. 334(c)), contacting the frangible doublers there and

- preventing these doubler.• from contacting the end of Segment 1 and the begin-

* 5
ning of Segment 14. With soft pads (E = 10 psi), more axial load passes

through the frangible doublers, which pinch the tube opposite the notches so

. that contact occurs at the end of Segment 1 and the beginning of Segment 14

Sinstead of at the equators of the toroidal tube crowns. Figure 336 shows

, deformation patterns for three cases in which constant end moments Ma and Mb

are included.

Bifurcation buckling is a possible mode of failure. If M 0' the

prebuckling deformation is symmetrical about a plane through the trotch roots,

and the critical bifurcation buckling mode corresponds to an axisymmetric

deformation (n = 0) or nonaxisymmetric deformation (n > 0) in a pattern which

is antisymmetric about this plane of symmetry. If Ma # b, the prebuckling
0a

deformation contains a component of the antisymmetric n = 0 bifurcation mode

which grows until failure occurs; there is no axisymmetric bifurcation

buckling. However, bifurcation buckling for n > 0 is still a possibility.
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The contact Londitions given in Figure 335 for bifurcation buckling are

- - derived from inspection of the post-buckled test specimen shown in Figure 3 3 3 (a).

••� in order to predict bifurcation buckling failure, it is necessary in this

case to impose different contact conditions for the nonlinear prebuckling

(equilibrium) problem and the bifurcation buckling (eigenvalue) problem. It

. is clear from Figure 333(a) that after buckling the primacord rube remains in

contact with the rest of the structure only at four points, two diametrically

opposed points on each side of the structural plane of symmetry.

A detailed discussion of the boundary conditions at points (a) and (b) [See

Fig. 332(b)] for the prebuckling and bifurcation phases of the analysis

is given in Ref. [ 428] and will not be repeated here.

Numerical Results: Table 31 lists the critical axial loads per circumferential

arc length for the three specimens tested and numerical results corresponding to

nonlinea collapse (limit load behavior) and bifurcation buckling, Load-axial

strain curves are shon... in Figs. 337 and 332 for the snecimens without and

with the primacord tube. Also plotted a-e curves for i.odels in which the notches

are omitted. With the notches present, the specimen without the tube is predicted

to collapse at 4900 lb/in and that with the tube is predicted to collapse at.

5650 lb/in.. Both of these results are within about 2% of the test failure loads.

Omission of the notches clearly changes the problem significantly for

the case without the primacord tubr.. However, a very good estimate of

the collapse load is obtained for the case with the tube. The notch plays a

less important role in nonlinear collapse when the tube is present because

the tube resists the tendency of the frangible doublers to pinch together.
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0 Computer runs in which the notches are omitted cost much less than do those

with the notches included because the entire model then consists of thin

shell segments. Local and globdl matrices fo- thin shell segments contain

many fewer degrees of freedom and integration points than do those for the

"eight-node isoparametric solid elements of revolution, and the assembled

matrices are more narrowly banded. Therefore, in preliminary design analyses

of similar frangible joints the cube shoull ue included in and the notches

omitted from the computerized models.

Figure 339 shows the predicted growth of plastic regions in the notches

with increasing axial compression for the case in which tne end moments

*.2.-M = = 0 iSee Fig. 332(b)]. The maximum effective strains e at thea e

notch roots are much less for the sp'ccimen with the tube, primarily because

. the tube resists the pinching motion evidant in Figure 336(c) and

- secondarily because the tube carries approximately 19% of the axial load

(with the assumption of "stiff pads").

The linear bifurcation loads listed in Table 31 are calculated for models

in which the end moments M and Mb = 0. For the specimen without the tube,

contact is assumed to exist at the four points E, F, G, and H (shown in

Figur? 337) in the prebuckling phase. As before, the critical bifurcation

buckling mode is axisvmmetric (n 0) and antisymmetric with respect to the

structural plane of symmetry through the notch roots. At V = 6840 lb./in.,
cr

the critical axial bifurcation load predicted from linear theory with zero

M a and MIb is much higher than the predicted axisymnmetric collapse (limit)

load of 4800 lb./in. with non-zero M and .
a I
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- For the specimen with the tubc., the bifurcation buckling contact conditions

are given in Figure 335. These conditions lead to a prediction of V =
cr

5339 lb./in., somewhat lower than the nonlinear axisymmetric collapse load

,"-*-of 5650 lb./in. The latter prediction is associated with the existence of

more contact points between the tube and the doublers, which undoubtedly

causes a significant part of th- difference.

The model with the tube gives a lower bifurcation buckling load than that

without because the effective free lengths of the doublers, which act as wide

columns in axial compression, are apparently greater if the doublers contact

- the tube crown equators [z = 4.16 and 4.72 in Fig. 334(c)] than if they

"* contact the ends of either Segment 1 or Segment 14. This result appears at

first to be anomalous. However, remember that the tube is only hinged to

Segments I and 14. Without the doublers, the two cylindrical segments and

the tube, linked as implied in Figure 335, constitute a mechanism. There-

fore, the contacts between the tube crown equators at z = 4.16 and 4.72 in

Figs. 334(c) and 335 represent effective loads on the doublers rather

than effective supports, and the [ree axial lengths of the doublers are

thereby increased approximately by the distance from the ends of Segments 1

or l,1 at z 4.0 and z = " 88, respectively, to the bolt lines indicated

in Fig. 334(b), depending on t'e contact conditions specified for the

bifurcation problem in Fig. 335.

Frangible Joint Embedded in a Complex Shell Structure

0

The purpose of this section is to demonstrate the applicability of the

nonlinear hybrid shell-solid model to a practical aerospace design, and to
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show how a proposed design modificatien affects the ultimate axial load-

carrying capability of the joint and surrounding structure. Also demonstrated

-* ~here are the techniqu_ and appropriateness of use of an equivalent axisymmetric

axial load tv, reDresent a combination of axial compression, shear, and

bending loads.

Structural Configuration and Segmented Model: Figure 340 shows the rocket

Sinterstage with a fral5.. ' c,"it similar to tnat displayed in Fig. 337.

The manner in which the structure is segmented for analysis with the BOSOR6

program [ 426] is illustrared in Fig. 341. Segment I is an eccentrically

4.. stiffened conical frustrum, treated in the BOSOR6 model as a layered shell
"-4a"

with layer properties derived as described in Fig. 39 of Ref [430]. The joint re-

gion and contact conditions between thv frangible doublers and Segments 5 and 16

are modeled in a manner similar to that shown in Fig. 335, except that the

. primacord tube is absent. The web of the large ring at the junction between

the conical frustrum and the Lylindrical shell (z = 231.6) is treated as a

flexible shell branch, with its flange included as a discrete ring with

dimension- indicated in Fig. 341(b). Axia', load path eccentricities exist

• in the upper part of the cylindrical shell, as shown in Fig. 341(a).

Segment 20 is made of graphite-epoxy and tbe rest of the structure is made

of aluminum.

"Certain geometrical constraints and the location of electrical equipment imposed

limitaticas on the location of the frangible joint. The best compromise

resulted in its location within the bending region in the neighborhood of the

cylinder-cone junction, as demonstrated in Fig. 342. This behavior

necessitates the use of the extensive model shown in Fig. 341. It is not
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sufficient to study ouly the immediate region of the joint or of the notches

in the frangible doublers in order to determine accurately the critical

axial load. There are nonlinear interaction effects between the overall

"rotation, bending, and shearing of the joint region and the local bending

- -'. of the frangible doublers due to the load path eccentricities caused by

tlh notches. The hybrid shell-solid model is ideally suited for this

analysis because extensive regions in which shell theory holds can be

"included in the model with relatively minor increases in computer run costs.

Substitution of Uniform Axial Comniession for the Actual Loads: The actual

"loading on the rocket interstage consists of axial, shear, and bending

components, as illustrated in Fig. 340. Figure 343 shows total load

components S,M,P applied at an end of a cylindrical shell and how these

loads can be converted into trigonometric harmonics of applied axial and

&nFiar stress resultants for use as input into BOSOR6. The most critical

meridian is that at 0 = 0, where the compressivP axial load is maximum.

The local stresses in the notch areas are predicted very accurately by

an axisymmetric analysis in which the axisymmetric compressive axial stress

resultant V is set equal to
o

V = P/2,rr + (14 + S /Trr2  ( 188)
0

where Z is the distance from the axial station at which S is applied to the

axial station at the iotch. rigure 344 shows a comparison of the effective

(von Mises) stress distributions through the doubler thicknesses at the roots

of the notches predicted from nonlinear axisymmetric and linear nonaxisymmetric

analyses with V 1000 lb/in, a rather small load compared to the ultimate
0
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load. Clearly an axisymmetric loading model suffices. The advantages of the

axisymmetric model are:

1. Nonlinear material and geometric effects are included in this

analysis branch of BOSOR6;

2. Far fewer degrees of freedom and hence much less computer time

are required for axisymmetric nonlinear analysis than for non-

symmetric nonlinear analysis.

Axisymmetric Collapse of the Rocket Interstage: Figures 345 a.,d 346

show exaggerated views of the axisymmetric deformation as the axial com-

pression is increased to the predicted collapse load of 4400 lb./in.

Failure is due to an interaction of overall large rotation of the joint

"region and local collapse of the outboard doubler brought about by plastic

flow which at this load has spread through the entire doubler thickness

- near the notch root. The predicted effective strain at the notch root in

this doubler is plotted for various axial loads in Fig. 347.

Effect of a Minor Design Change: Figure 348 shows the difference between

an original joint design and the final configuration displayed in Fig. 341.

0 With the original design (a) the axially loaded joint deforms in such a way

that approximately 56% of the total axirl load passes through the inboard

- frangible doubler and 44% through the outboard frangible doubler, causing

the stresses at the root of the inboard notch to be higher than those at the

root of the outboard notch. The changes in Segments 4 and 17 shown in

Figure 348 shift more axial load to the outboard member such that the

maximum stresses in the outboard member are slightly higher than those of
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"the inboard member. The original design (a) leads to a predicted collapse

load of 4000 lb/in and the redesigned joint (b) leads to a predicted

collapse load of 4400 lb/in. The .03-inch outboard shift of Segments 4

and 17 is a bit too much. A .025 shift would probably be better. The

deformations in the doublers at the collapse loads of the two configurations

are illustrated in Fig. 349 and the growth of the plastified regions is

exhibited in Figs. 350(a) and (b).

Effect of a Steel Primacord Tube: Figure 351 shows results from a model

in which a 0.015-inch-t'iick steel primacord tube is aaded to the model displayed

in Fig. 341. The steel tube contacts Segments 5 and 16 in such a way

that only axial displacement continuity is enforced (sliding contAct). It

is represented as a toroidal shell with four segmentb as plotted in Fig. 335.

The predicted axisymmetric collapse load with the tube present is 1000 lb/in

higher than with the tube absent. This result is corroborated by experiments,

as demonstrated by comparison of Figs. 337 and 338.
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TABLE 1 COMPARISON OF TEST AND THEORY FOR AXIALLY COMPRESSED CYLINDERS

Test (Lee Highest Lowest

[1962]) BOSOR5 Test Test
Model R/t Load (ib) Predictiona BOSOR5 BOSOR5

A300 46.1 5400 5202 1.038

AllO 9090 8923 1.019 0.884

A210 29.2 8680

A310 7890

* A120 14500

A220 19.4 14840 14328 1.036 1.005

A320 14400

A130 35000

A230 9.4 36100 33200 1.087 1.054

A330 36000

aAxisymmetric collapse predicted in all cases
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"TABLE 2 COMPARISON OF TEST AND THEORY FOR AXIALLY COMPRESSED
CYLINDERS TESTED BY P.iTTERMAN [1965]

BOSOR5
Test Stress Predictiona Test

Model R/t (psi) (Clamped Edges) BOSOR5

9 116.61 31770 44643 0.712

. 8 114.56 33030

10 113.60 35600 43478 0.820

17 89.33 43950

26 85.95 43690 45063 0.970

16 56.52 51380 52282 0,983

25 54.93 50640

15 44.69 55490

24 44.19 53380 55663 0.959

4 26.61 58200

3 26.56 58200

2 26.44 57100

1 26.18 58600

"5 25.94 59570

6 25.88 5P760 57422 1.023

14 19.71 61580 59175 1.041

23 19.66 61480

O 13 14.02 64110

22 13.93 63790 62886 1.014

18 9.76 70000

19 9.76 69320

20 9.76 69840 71225 0.980

12 9.70 69630

27 9.70 69230

a
Axisymmetric collapse predicted in all cases
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T2 2

.Table 4 Critical loads rlVcr(l-v )/Et for spherical segments in tension
.•4,

.R/1 = 100 fet = 455 1f/t = 1600

Eq. N n- Eq. Non- E. Nol-.n (4.32) Linear linear n (4.32) Linear linear n (.4.32) Linear l,,,vur

, 16 3s 0 58)) 0 574 0 578 71 0 552 0 532 0.539"1 0 '7 0.s5 1 0 513 }0 522
0 9 18 0 543 0 540 35 0( 46' (0 468 ) 480 63 0 426 0 423 0 430
0 8 33 0 405 (0 4! ( 0 430
0 7 16 0 448 0 442 0 488 30 0 348 0 353 0 371 53 0 ju. 0 308 0 315

.0 6 . 27 0 285 ( 22)9 0 310
0 5 13 0 326 0 309 0 381 24 0 224 0 226 0 250 41 0 183 0 188 0 197"0 4 21 0 167 0 166 0 1MI

* 0 3 10 0 205 0 170 0 269) 17 0 115 0.110 (2 137 28 0 084' 0 0853 0 (9-K)
1 -) 25 .. 15 0 0910 o0856 0 112 ,
0 2) 20 8 0 149 0 1)07 0 225 13 0 0698 0.0632 0.0903 2() 0 0467 0 (457 (0545
0.20 9 0) 149 0 112 0 222
2)?,'- f 15 .5... 1( 2(2518 0 0432 9 0728
2I 15 11 0)2)518 0 0434 0 0714
-0 15 12 0..1)518 0 (2723
0 10 4 0 ()0 M ( 0638 .,7 22 0360 0 0273 (2 0682 11 0 02193 0 0173
0 10 . ) ()I2(PO 2) 0526' 8 ( 0360 0 0262 0 0592 12 0 0193 0 0169 (2 2)254
0 10 6 22)) 2Io 0534) 9 0 03660 0 0269 0 0567 13 0, (193 0) 0171 2) t253
2) 1(0 7 2) M90) 2 0 0)5 0 196 10 0 0360 0 0572 14 0 (2193 2 0176 22 0258
22 ))M 8 22 ) WIN) 0 0703 2 1'3 .). .. ..
2 ) 1( ! ) 111 (2 00' 0 199
(2 05 3 0 0775 2 2377 5 0 0230 0 0127 7 0 22100 274
22 05 4 0 0)775 2 02297 (6 0 0230 0 0126 0 495820 8 0 0(100 0 0072 ( 02169
2) 0)5 5 0 2775 2 )1331 7 0 0230 0 01391 (22496 9 (2 0100 0 0075 0 ()162
0 05 6 2)2)775 0) 0406 8 0 0230 22 0479 10 0 0100 ...: 0 0164
22 05 7 2 )2775 0 0510 0 188 9 0 0230 0 048) ...

2 0)5 8 0 )775 0 188
. 8 0 0258 0 185 P, ) 0128 0 0456 8 0 0033 0 0133

a With a, = 1 16, a = 1.57. These cases were treated experimentally and analyt-
"ically by Yao (1993). For all other al, with R/t = 100: a2 = al + 1.0 rad.
With R/t = 455 and 1600 a2 = al + 0.5 rad. The nonlinear results were obtained
with an early version of BOSOR (see AIAA J, 5, pp. 1455-1462, 1967).

'4.2

..- .•422
,'=



"03

Table 5 BUCKLING LOADS PR/Et FOR bPHERICAL SHELLS
WITH OUTWARD-DIRECTED CONCENTRATED LOADS.

R/t n Pp/Et 3

3040 8 148

*1600 8 147

"455 8 144

"100 8 129

50 8 113

n
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TABLE 7 PREDICTED FAILURE OF STEEL WATER TOWER

"Model Critical Hydrostatic Pressure Factora

Hydrostatic- Pressure Only 1.9 < A < 2.0
cr

Welding + Pressure 1.8 < X < 1.9
cr

Cold Bending + Pressure 1.7 < Xcr < 1.75

Mismatch #1 + Pressure 2.0 < X < 2.1cr

Mismatch #2 + Pressure 1.8 < Xcr

"aFailui- mode is axisymmetric collapse in all cases.
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TABLE 8 NOMENCLATURE FOR BOUNDARY CONDITIONS ON
CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION
OR UNIFORM EXTERNAL HYDROSTATIC PRESSUREa

"Case S1 when M. = 0 u = 0 v = 0

Case S2 when M = 0 N = 0 v = 0
x 0x

Case S3 whenM =0 u=0 N =0

Case S4 when M =0 N =0 N =0x x xy

Case C1 when w =0 U = 0 v = 0
S0x

Case C2 when w =0 N = 0 v = 0

xxSCase C3 when w = 0 u = 0 N xy = 0

Case C4 when w =0 N = 0 N = 0.. ,xx xy

* a w = 0 at the boundary in all 8 cases
In the work of Singer et a!. [ 33] SS3 = S2 and SS4 = S1
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TABLE 14 THEORETICAL AND EXPERIMENTAL BUCKLING
LOADS AND (MODES)

"Experiment SS 3a SS4 Clamped
bShell P kg P ,kg P ,kg P ,kg Pcr ,kgexp post' cr cr c

AB1 4700 (9) 4150 4996 (12) 6554 (12) 9300(12)

AB2 4900 (9) 4040 4828(12) 6358(12) 8990 (12)

AB3 3400 (8) 2970 3967 (10) 5942(11) 7230 (12)

AB4 3615(8) 3038 3955(10) 5929(11) 7204(12)

AB5 3580(8) 3000 3833(11) 5574(12) 7044(12)

"AB6 4025(9) 2250 3687(11) 5425(12) 6489(12)

aSS3 denotes v = w = N =M =0 at the edges

SS4 denotes v = w = U M =0 at the edges

Ppost = post buckling load-carrying capability

0
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TABLE 15 BUCKLING LOADS (MILLIONS OF LBS) FOR
AXIALLY COMPRESSED ECCENTRICALLY
STIFFENED ALUMINUM CYLINDRICAL SHELLS

Internal External
Boundary Condition Code No.a Stiffening Stiffening

Nonlinear prebuckling analysis 1 1 . 6 7 0 ( 1 8 )b 3.770(19)

2 1.250(20) 4..30 (17)

3 3.580(14) 1.235(26)

4 4.540(20) 9.620(15)

Membrane prebuckling analysis 1,2,3 1.520(18) 2.700 (21)

"4 3.670(21) 6.060(22)

Boundary condition code: Axial load applied at I) neutral
"surface, 2) shear center, 3) centroid of stiffener, 4) shell
clamped

b Numbers in parentheses indicate number of circumferential

waves in buckle pattern
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"TABLE 17 COMPARISON OF TEST AND THEORY FOR RING-STIFFENED
ALUMINUM CYLINDERS SHOWN IN FIGURES 160(a,b).

Model Test Theory
Number- Results

"Frame lbf/in. Cla,.aped Free Ends With
Number (Ref. [18]) Ends Large End Rings

.Goue aI, b
"."1-1 240(2)c 281(2) 210(2)

2-2 299(2) 351(2) 280(2)
"S,3 407(2) 445(2) 374(2)

4-4 464(2) 517(2) 446(2)
5-5 555(2) 601(2) 530(2)
6-6 795(2) 850(2) 781(2)
7-7 777(2) 838(2) 768(2)
8-8 913(2) 990(2) 921(2)
9-9 963(2) 1058(2) 989(2)

10-10 1055(4) 1120(4) 1117(4)
11-11 1020(4) 1133(4)

Group 2
12-1 480(3) 516(3) 395(2)
13-3 785(3) 846(3) 547(2)
14-5 948(3) 1037(3) 695(2)
15-6 1048(4) 1100(4) 933(2)

Group 3
16-1 621(3) 715(3) 631(3)
17-2 797(3) 900(3) 800(3)
18-3 967(3) 1085(3) 967(3)
19-4 1063(3) 1198(3) 1114(3)

20-5 1075(4) 1189(4) 1152(4)

Group 4
21-5 758(2) 834(2) -:;3(2)
22-7 1115(2) 1237(2) •0(2)
23-9 1471(2) 1611k2) 1537(2)
24-10 1704(5) 1913(2) 1 9 2 4 (S)d 1843(2)

a bGroup geometries shown in Figure 160(a).
' Frame (ring) geometries shown in Figure 160(b).-Numbers in parentheses refer to circumferential waves.
dCorresponds to displacements antisymmetric with re-

spect to symmetry plane.
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TABLE 18 EFFECTS OF AXIAL RESTRAINT ON BUCKLiNG LOADS

OF BLUMENBERG* CYLINDERS 12-15

Theory

Model Test
SNumber- Results Ends with Large Rings

Frame lbf/in.
2

Number (Ref. [18]) Clamped Axial
Ends Restraint No Restraint

U 0

12-1 480(3) 516(3) 698(2) 512(3) 395(2) 499(3)

13-3 785(3) 846(3) 856(2) 842(3) 547(2) 832(3)

14-5 948(3) 1037(3) 1006(2) 1035(3) 695(2) 1027(3)

15-6 1048(4) 1100(4) 1245(2) 1096(4) 933(2) 1089(4)

* See Figures 160(a,b) for geometry of shell and

frames (rings).

0
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TABLE 19 CONVERGENCE OF CRITICAL LATERAL PRESSURE
,IARAMETERa, p Pcra/Et?..)..[. r

L/a =0. 6 L/a =6.0

ba = 5 236 in. a = 0.5236 in.•,'."".'•b,
Sin. p,(10)b p,(12)b pc,(4)b p,(S)b

10 0.26141 0.38559
25 1 8467 1 9949 0.19387 0.33774
"50 1 7790 1 9090 0 17486 0.33036
100 1 7415 1.8815 0 16668 0.32789
500 1.7129 1.8664 0.16085 0.32648

1,000 1.7095 1 8649 0 16017 0.32634
"5,000 1.7068 1 8638 0 15964 0.32623

10,000 1.7065 1 8637 0 15957 0.32620

00 1.7024 - (Flugge) 0.15943 - (Flugge)

With increasing toroidal radius b for shells with a/i - 100, E - 104 psi.
ii,.5 ,~ -o 03

b Superscripts in parentheses represent the total number of waves around
"the circumference of the cylinder.

TABLE 20 MESH POINT CONVERGENCE STUDY FOR SIMPLY-
"- SUPPORTED CIRCULAR CYLINDERa

- Number o! L/a = 0 6 L/a = 6 0
mesh points a = 5 236 in. a = 0.5236 in.

per half-wave P,(10) p,(4)

2 2.0467 0.21976
4 1 7886 0.17209
6 1.7409 0.16491
8 1 7242 0 16250

10 1.7164 0.16141
14 1 7097 0.16046
"19 1.7065 0.16002
25 0.15979
35 ... 0.15964
48 ... 0.15957

1.7024 0 15943

Anal3 7ed as portion of torus with radius!, l0,( v,. a 1 100, E - 10'
psi, . = 0 3 Critical lateral pressure parametr ',,r - r,/.t

TABLE 21 MESH POINT CONVERGENCE STUDY FOR SIMPLY-
SUPPORTED CIRCULAR CYLINDEE ANALYZED AS

A CYLINDERa

Number of axial mesh points Critical lateral rressure, P•,

5 1.7146
10 1.7063
20 1.7035
30 1.7029
50 1 7025
"80 1 7024
"97 1 7024

s P~-P, - p,,a!Et, a/f = 100, E - "('psi, r0 3, L/a = 0 6, a - 5 236 in

5.%

"(All from Bushnell [ 82])
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TABLE 22 BUCKLING PRESSURES OF ELLIPTICAL CYLINDERS WITH
A/B = 2 AND VARIOUS LENGTHS AND THICKNESSESa

Buckling pressures, psi

Test/
Theory Test BOSOR

BOSOR
"with Yao and Yao and

"Thickness Length BOSOR x. - 0 Jenk.ns Jenkins
f, in. L, in perI pNO pci' pT p5 ,T/lpl

0 019 2 0 730 0 797 0 714 0 613 0 84
4 0368 0381 0331 0324 088
6 0 246 0 259 0 217 0 239 0 97
8 0 189 0 203 0 166 0 189 1 00

.0 0 150 0 170 0 133 0 140 0 93

0 029 2 2 16 2 47 2 23 1 88 0 87
4 1 11 1 16 1 00 0 877 0 79
6 0.739 0 788 0 661 0 665 0 90
8 0 567 0 621 0 499 0 533 0 94

10 0 437 0 502 0 390 0 411 0 94

0 051 2 1C 0 11 5 10 12
4 471 5 13 4 i3 3 10 0 66
6 320 3 53 82 2 21 0 69
8 226 2 64 2 03 1 54 0 68

10 1 63 2 15 1 63 1 14 0 70

0 091 2 57 2 57 6 50 5
4 20 5 24 4 20 1
6 13 4 15 9 12 5 7 77 0 58
8 9 23 12 2 9 42 5 81 0 63

10 5 87 10 6 8 23 4 46 0 76

E - 470,000 psi, = 0.37, A - 40in,B - 20in

TABLE 23 BUCKLING PRESSURES OF ELLIPTICAL CYLINDERS WITH
A/B = 1.5 AND VARIOUS LENGTHS AND THICKNESSESa

Buckling pressures, psi

* •Test/
Theory Test BOSOR

"* .BOSOR
with Yao & Tao &

, Thickness Length BOSOR xo - 0 Jenkins Jenk not|, in L, in p",. Pcrs po-1 PerT parT/V-r

0 019 2 0 706 0 768 0 683 C 600 0 85
4 0 345 0 349 0 316 0 300 0 87
6 0 228 0 231 0 207 0 214 0 94
8 0 172 0 176 0 155 0 167 0 97
10 0 138 0 143 0 125 0 131 0 95

"0 029 2 2 08 z '06 2 15 1 60 0 77
4 1 )4 1 05 0 952 0 874 0 84"6 0 678 0 691 0 621 0 610 0 90
8 0 511 0 525 0 466 0 496 0 97

10 0408 0424 0371 0403 099

0 049 2 860 976 945
4 3 99 414 396 307 077
6 2 64 2 71 2 54 2 22 0 84
8 197 204 189 169 086

10 1 60 1 69 1 51 1 38 0 86"-000 2 ,7 7 497

4 I1 6 20 8 19 1
6 12 7 13 4 12 0 9 52 0 75
8 9 66 10 3 8 88 7 63 0 79

10 7 51 8 21 7 01 5 86 0 78

a E -470,000 psi, -037, A -53333 in , B 35777

(both from Bushnell [ 82])
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TABLE 24 CONVERGENCE OF ELLIPTICAL CYLINDER BUCKLING
PRESSURES (psi)a

t 1 "erm 3 terms 5 terms 9 terms

0.019 0.152 0.151 0.150 0.150
0.029 0.449 0.442 0.438 0 437
0.051 !.73 1.65 1.63 1.63
0.091 6.97 6,32 6,05 5.87

a W.'ith increasing numbers of terms in the Fourier sine series expansion of
uniform pressure: A/B = 2, L = 10 in.

4

j;.

1'439

I



TABLE 25 INFLUENCE OF BOUNDARY CONDITIONS AND PREBUCKLING
BEHAVIOR ON THE BUCKLING 4OAD OF AXIALLY COMPRESSED
CYLINDRICAL SHELLS (from Arbocz and Babcock [ 341])

crit

Hoff and Almroth

Soong [ 330] [ 152]
(Membrane (Rigoious

Boundary Conditions Prebuckling) Prebuckling)

W W xx= a x Txy 0 0.5 0.502

"W W,xx u = xy 0 0.5 0.503

w = = ax = v = 0 1.0 0.844Sxx x

w = W XX= u = v = 0 1.0 0.867

W Wa x = Twy xy 0 1.0 0.908

w = W, x = = 1.0 0.926
Sxy

W = wx = 0 = 1.0 0.910•x x

W = wx = 0 1.0 0.926

"0
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TABLE 27 BIFURCATION AND IMPERFECTION SENSITIVITY OF

"AXIALLY COMPRESSED, AXIALLY STIFFENED BARRELED

"CYLINDRICAL SHELLS (from Hutchinson and Frauen-

thai [ 346])

o>

0 0 0"$4 ,. A 0

0, 0 r 0 C k4 W

01 E

Q s Is U R r Pc wtff nL b b

0444 .' 1.4 fl

N - - - 4x (P 4unstff. TR C

500 6 0 10.44 10.45 -0.056 -0.064 -135 45

6 0 6.07 17.0 -0046 -0.040 -135 45

2000 6 4 0 4.48 22.0 -0.036 -0.032 -135 45

S3000 6 * 0 3.96 24.3 -0.024 -0.024 -135 45
4500 6 0 3.50 27.2 -0.016 -0.016 -135 45

3500 -6 0 4 .33 11.3 -0.0065 -0.0077 -125 45

000 -6 0 2.64 14.7 -0.0094 -0.0098 -130 45

S2000, -6 * 0 1.96 18.8 -0.013 -0.013 -133 45

3000 -6 * 0 1.79 21.8 -0.013 -0.013 -133 45
5000 -6 0 1.71 26.3 -0.012 -0.012 -134 45

1000 6 40 7.44 15.7 -0.046 -0.033 -135 45

100u 6 20 8.64 15.0 -0.044 -0.026 -135 45

00 0 9.58 14.5 -0.040 -0.020 -135 45

1000 6 50 10.89 13.9 -0.033 -0.013 -135 45

1 ''' 000 6 * 70 11.79 13.4 -0.026 -0.0088 -135 44

i"•' 000 6 * 90 12.46 12.8 -0.022 -0.G058 -135 44"C000 -6 10 3.28 14.2 -0.016 -0.017, -133 45

"4- 44 -0.04241134 CO

1i000 -6 * 20 4.15 13.7 -0.021 -. 2 14 4
1000 -6 30 5.20 13.3 -0.023 -0.023 -135 45
100 -6 * 40 6.18 13.4 -0.020 -0.020 -134 45

1000 -6 * 50 6.85 14.6 -0.012 -0.012 -133 45

2000 -6 * 60 7.31 15.2 -0.0086 -0.0083 -131 45
"300 6 0 0 8.79 6.5 -0.012 -0.0042 -142 36
"500 6 0 0 5.04 10.6 -0.029 -0.013 -136 43

7 500 6 0 0 3.75 11.3 -0.034 -0.021 -135 44

"1000 6 G 0 3.25 14.3 -0.0094 -0.023 -135 45

3- 200 -6 0 0 .18 9.9 0. 0.013 20 45

5- 300 -6 0 0 1.04 21.1 -0.0024 -0.0025 - 17 45

7- 7500 -6 0 0 0.996 12 5 -0.0059 -0.0062 - 90 45
1000 -6 * 0 0.978 13.5 -0.0094 -0.099 -109 45

"300 -6 -6 0 4.08 7.0 -0.020 -0.027 -134 44

500 -6 -6 0 2.35 9.4 -0.015 -0.015 -132 45

N 1000 -6 -6 0 1.48 12.6 -0.014 -0.014 -131 45

[." •-.'Clamped boundarý conditions
|'•""•"T Given to closest degree

13 200-442
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TABLE 28

BUCKLING OF A RING-STIFFENED CYLINDRICAL SHELL
"UNDER HYDROSTATIC PRESSURE: COMPARISON OF MULTIPLE
OBSERVATIONS ON A SINGLE SPECIMEN (Test data from
L 423], theory of [ 424]).

Station Southwell Station Southwell
No. Load No. Load

1 172 12 171
2 171 13 172
3 173 14 174
4 171 15 173
5 173 16 169
6 169 17 168
7 171 18 174
8 178 19 174
9 174 20 168

10 173 21 174
11 174

Mean value of load 172.2
Theoretical value (Kendrick) 173

Ratio of mean value
theoretical value

TABLE 29

BUCKLING OF RING-STIFFENED CYLINDRICAL SHELLS

UNDER HYDROSTATIC PRESSURE: COMPARISON OF
SINGLE OBSERVATIONS ON A RANGE OF SPECIMENS
(Test data from [ 423], theory of [ 424])

Specimen Southveli Load
No. Theoretical Load

1 1.011
2 1.0223 

.861
4 1.076
5 .882

Average = 970
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a
TABLE 30

BUCKLING LOADS oF PERFECT MONOCOQUE CYLINDRICAL SHELLS
OBTAINED FROM SOUTHWELL PLOTS OF DATA OF ARBOCZ AND
BABCOCK [ 341]

max. load P (Southwell) P
Cylinder a a -

mean load Pai Pl

A7 1.16 0.87 1.009

A8 1.12 0.90 1008

A9 1.06 0.91 0.964

a from Horton and Craig [ 414]
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"TABLE 31 COMPARISON OF FAILURE LOADS FROM TESTS AND BOSOR6 MODELS

Critical Axial Load Vcr
from BOSOR6 (lb./in.)

Primacord Critical Test
Specimen Tube Axial Load Nonlinear b
Number Present? V (lb./in.) Collapsea Bifurcation

1 No 4708 4800 6841

2 Yes 5788 5650 5339

3 Yes 5513 5650 5339

* a
Correspond to stiff pads. Specimens 2 and 3 were nominally identical.

bCalculated from linear analysis with M The lowest bifurcation

buckling load corresponds to n = 0.
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Fig. 3.Buckling is a somewhat mystifying phenomenon (Courtesy St. Regis Paper Co.)
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Figure 2(a) Structures have been built with ...
(courtesy New Yorker Magazine, April 29, 1974'r
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Figure 2(b) ... insufficient margins of safety.
(courtesy New Yorker Magazine, April 29, 1974)
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S( a ) , ,0 ' ,
4 r -•

(a) Photograph of collapsed
"s t r u c t u r e 113 0 - . -

Mb This weak zone interior view _ *1
after collapse shows a weld
"along the actual deformed
meridian

"(c) Dimensions of the damaged
watertower 0

D 17 1)

*(b) (c)

r j~~1002 -

Figure 4 Collapse of a large steel watertower upon being filled for the first
time. Failure was caused by local buckling near the dccpcst water

k-.V level in the conical portion of the tank (from Baltus and Massonet
2]).
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~. 0.020 Corrugation

__________ (c) Inte~rior view of portion of complete
Jon shroud buckled locally next to field

rj 0040 kinjoint aL station 468 [see (a)].
0.020 Corrugation Three waves are visible.

• %

, 0040 Skin

S0.025 Corrugation

468.Field T_
Joint0koi astn6 sea

I -

0050 Skin
H 0.025 Corrugation

3.17'

"" L 0063 Skin
L, 0.032 Corrugation

H1 I__ A. ~
Hýf~~dbe 468

I- 20"-..j>

(a) Typical ring-stiffened rocket payload
shroud configuration.

d h(d) Field joint geometry and buckle
configuration.

inner Surface

(b) Corrugated wall construction.

Figure 5 Local failure of a large payload shroud under axial compression
and bending. Buckling is caused by the narrow band of circum-
ferential compression arising from the inward excursion of the
axial load path near the field joint at station 468 (from
Bushnell 3]).
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COLLAPSE BIFURCATION
LOAD POINT

A B

FUNDAMENTAL POST-
EQUILIBRIUM BIFURCATION

-J

0 END S1 ORTr ' N G

Figure 6 Load-end shortening curve w.Lth limit point A, blfurcation point B, and

Opost-bifurcation equ1i1briur1 path, BD (photograpbs court.2sy '.obel and

Newman [42]).
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400q

% %

% O

%. %

heWb 

w b

(c) STABLE POSTBUCKLING (d) UNSTABLE POSTBUCKLING

- PERFECT STRUCTURE

IMPERFECT STRUCTURE

LFigure 8 Different types of load-displacement relations.
r Ak is the load; wb is the buckling modal displace-
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Figure 16 Stress distribution in plate before and
after buckling (adapted from Brush and
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Figure 17 Cylinder with completely developed elastic buckle pattern
(from Horton et. al. [4.38])
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Figure 20(a) Effect of imperfections on load-deflection curve for
axially compressed monocoque cylinder. (from Donnell
and Wan [30]).
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Figure 21 Typical postbuckling pattern of axially
compressed stiffened cylindrical shell
(from Singer and Abramnovich [158]).
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Figur, 22 Comparison of test and theory for buckling of axially

'' compressed cylindrical shells with various wall con-
structions (from Almroth et al. [ 34]).
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Figure 23 Typical post-buckledI pattern for long cylindrical
shell under external hydrostatic pressure (from
Ekstrom et al [35]).
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Figure 24 Typic~al1 ost-buckled pattern for medium-
l2ýngth cylindrical shell under external
hydrostatic pressure (from Harris et al.

.-. L[i6])
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Figure 26 Typical post-buckled pattern for unpressur-
ized cylinder in torsion (from Harris et al.

36])
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Figure 28 Post-buckled state cf 3 thin-walled spherical shell
under uniform external pressure. Buckling motion is
restrained by an interior mandrel (from Carlson et al.
[39]).

473

--"' '-,-'



%" P/Pc• ~P/PcP/c

1.0

(a) (C)

"0 <<A<3.5 I

0 0w 0

-- Linear Prebuckling 0 - Complete .pherical Shell
Bifurcation Buckling Pressure

-- Nonlinear Prebuckling 0 - Spherical Cap Bifurcation
Pressure

• .- •P/PcU P/P cI P/P cl

I I
1' 0

\ (d) (e) (f)

0 o0 0

Figure 29 Load-deflection curves and bifurcation buckling of spherical
caps with various values of the shallowness parameter
X = 2[3(l-v 2 )]¼(H/h)½.
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Figure 31 Radial deflection profiles for cylinder under
increasing axial load (from Murphy and Lee [ 46]).
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" Figure 33 Symmetric ultimate collapse pattern in plastic
buckling of axially compressed cylindrical
"shells (from Lortcc et al. [ 38]).
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Figure 36 (a) Axisymmetric collapse of ring-stiffened cylinder with creep
included in the analysis (from Bushnell [ 47]).
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Figure 42(a) Load-deflection curves and max 4 Iium moment
for bending of unpressurized straight
cylindrical shells with various L/r. The
ends are constrained to remain circular
(frow Stephens et al. [ 58]).
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theory. These results demonstrate the inadequacy
of a linear bifurcation model (from Almroth and

Brogan II85]).
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Figure 47 lai1tial buckling of axially compressed aluminum cylinder
with rectangular cutout (from Almroth and Holmes [ 87]).
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Figure 48 Post-buckled state of axially compressed cylinder with
rectangular cutout (from Almroth and Holmes j37]).
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* Figure 49 Equilibrium paths for axially compressed cylin-
drical shell with two diametrically opposed
cutouts (from Brush and Almroth [ 41).
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"Figure 50 Comparison of test and theory for buckling of
axially compressed cylinder with two diametric-
ally opposed rectangular cutouts.
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- Figure 52 Critical load vs. cutout angle for axially compressed
cylindrical shell with two diametrically opposed rec-
tangular cutouts (from Almroth and Holmes [ 87]).
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Figure 53 Collapse of axially compressed cylindrical shell with dia-
"metrically opposed reinforced cutouts (from Almroth and
Holmes [ 87]).
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Figure 54 Finite element grid for cylinder with circular
cutout (from Brush and Almroth [ 4]).
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Figure 56 Equilibrium paths for cylinders with cutouts,
a = 1.5. w is the outward displacement at the
midlength of the cylinder at the edge of the

* cutout (from Brush and Almroth [ 4]).
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PEAR SHAPED CYLINDER * P 1164 Ibs.
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SFigure 58 "Pear-shaped" cylinder under uniform end shortening.
(a) Cylinder geometry
(b) Load-deflection curves
(c) Normal displacement at midlength at collapse
"(d) Axial line lead at midlength at collapse
(Total axial load refers to load on the half of the
cylinder shown.)

(from Bushnell et al. 90])"i..
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Figure 59 Complex rocket interstage subjected to axial compression during

launch. Stability problems arise from the load path eccentricity

at Missile Station 175.9.
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Figure 61 Deformed profiles of the axially compressed rocket
interstage with increasing axial compression, V.
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Figure 62(a) Edge buckling mode in thin monocoque circular cylin-
drical shell under uniform axial compression (from

Horton et al. [ 38]).
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Figure 62(b) Prediction of edge buckling in axially compressed
monocoque cylindrical shell (from Bushnell [ 34]).
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Figure 63 Comparison between test and theory for ring-supported
spherical caps with external pressure and applied edge

moment, M (from Bushnell [ 91]).
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Figure 70 Stability determinant vs. temperature amplitude with prebuckling
rotation 6 included (from Bushnell [ 97]).
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Figure 80 Local failure of a large payload shroud under axial compression
and bending. Buckling is caused by the narrow band of circum-
ferential compression arising from the inward excursion of the
axial load path near the field joint at station 468 (from
Bushnell 1 3D).

529

........ , .......... ...............................



----

END I A END(F0RwA) J (FT) --f .-o0

RING GEOMETRY

S,075

_ F r 02( ) i t e9g

t004 09 0113 OS

5-----2 25 ISGO -2 22 - 5.- 7

SECTION A.

Figare 81 Model of the port2.on of the payload shroud, shown in

Figure 80(a) in the neighborhood of the field joint

at station 468.

"17.' 530

5,..



.00004
__ N1  1.0 lb/in

~z~ 00002-

0

.0000 I

"(a)

0
"' •=RINGS !Ncr = 1520 Ibs/in

"- J -0.5- ncr = 35

0 20 40 60 80 100 120

AXIAL DISTANCE (inches)
(b)
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(a) Predicted axi-

symmetric prebuckling normal displacement distribution corresponding
to N1 = 1.0 lb/in compression; (b) Nonsymmetric bifurcation buckling

mode (from Bushnell [ 3]).
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Figure 83 Buckling pattern for a thin-walled spherical shell with a
solid bottom half and tension applied by meanb of an in-
ternal rigid spherical mandrel extending approximately

* 450 from the top pole (from Horton et al. [ 38]).
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(a) Liquid natural gas (LNG) carrier with spherical
cargo tdnks.

- t ---- Unstiftened spherical shell

"- REquator profile

"LNG Stiffened cylindrical shell

Supporting ship hull

(b) Spherical tank design for LNG.

Spherical tank

S Supporting cylindrical shell

(c) Supporting cylindrical skirt.

Figure 86 Very large spherical tanks for transporLation of liquid
natural gas (from Pederson and Jensen [ 112]).
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Figure 88 Buckling pattPrn for a thin spherical shell subjected to axi q

tension. Buckling motion is restrained by an interior mandrel

(from Horton [ 38]).
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Figure 90 Simple rig to demonstrate nonsymmetric buckling under
internal pressure (from Gellately ( 4.13n]l).
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Bushnell [ 138]).
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buckled model';' and (d) predicted bifurcation bucklingI. load factor and mode from linear theory (photograpis

courtesy of Dr. Guy Lagae, Univ. of Gent, Belgium).
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Figure 107 Load-maximum normal deflection curve with bifurcation points

from linear ann nonlinear prebuckling theory and axisymmetric
c(-ollapse load factor.
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540.0
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Figure 109(a) Geometry of large sceel watertower that failed in
Belgium in 1972 (from Vandepitte II140]).
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"Figure 109(b) Segment numbering and discrctization for BOSOR5 analysis
of idrge steel water tank.
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"igure 109(c) BOSOR5 model of watertank showing loceýions )f axisymmetric
welds and discrete rings.
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C- 90

(a) Mismatch #1

C Iq

Figure 110(b) Two BOSOR5 models of possible axisymmetric
mismatch between Segments ®and
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Figure 111 Local axisymmetric shrinkage due to cooling down of welds.
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Figure 115 (a) New design of the watertower; (b) deformations
under increasing loads (from Baltus and Massonnet [ 2]).

L5

569



(a) Stringer-stiffened shell with ends simulating a prac-
tical aerospace joint.

°.4

:;, A

•'.'8

C

-~ (b) Details of "Practical" boundary conditions for axially
compressed cylindrical shells.

Figure 116 Stiffened cylindrical shell and simulation of practical
end condition used in experiments by Singer et al (from
Singer and Abramovich [ 33]).
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Figure 118 Critical axial load as a function of ring thickness

for cones supported at the edges by rings of squarecross section [C11 is given in Eq. (85) of Ref.[430]

(from Almroth and Bushnell [153]).
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Figure 119 Buckling loads for spherical shrills with edge
rings of square cross section:

0 = BOSOR 4

SInextensional [AIAA J., 6 361-364, 1968]
---- = Donneli theory [ 92]

(from Bushnell [ 91]).
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Figure 120(b) Post-buckled state of specimen with 750 crnical
end (courtesy G. D. Galletly [ 154]).
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",e•*-" 
~NOZZLE--

q 50,50"R010

---------------

-
P fen rw e V e m I F la n o e/

Figure 121(a) Aluminum torispherical head with axisymmetric
nozzle tested under external pressure by Galletly
at the University of Liverpool (from Bushnell
and Galletly [ 131]).

n .0 02 n m 3A3 1 PREBUCKLING".
0. 054 M 4 DEFLECTED

t •0.34 uNominal) 
0.675-. 

SHAP

1.08R .O

0 2.7R

-.ATER IAL
A LUI hMNUM

* v •0.32

". Figure 121(b) Discrete model of one of the torispherical specimens with
exaggerated view of the prebuckling deflected shape at the
buckling pressure (adapted from Bushnell and Galletly [ 131]).
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Figue 11 () Galety'sbucled pecmen (corte-I . D

Figue 12(c)Galletly' s155))spcmes(cuteyGD
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,.-.., Fi.gure 121(d) B•,ifurcat~ion buck.l.ing modes and compar~ison w:ithb
.Galletly's test results (adapted from Bushnell

and Galletly [ 131]).
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Ityp.I 60" R

0
-J 2000-

TYPICAL BUCKLE
X •PATTERN
< 1800
-j

OAsymptote For
S1600

1400 1 1 1 I I
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LENGTH OF PANEL, L (inches)

Figure 122(a) Theoretical buckling loads obtained with the BOSOR4

computer program for clamped corrugated cylinders of

various lengths with discrete rings on ih-in, centers

[t = 0.020 in., ts = 0.32 in. (see Figure 122(b)]

(from Bushnell [ 3]).
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Figure 122(b) Geometry of semisandwich, corrugated wali and internal
discrete rings (from Bushnell [ 3]).
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*Figur c J23(a) 60-in, radius x 52-in, long curved, ring-stiffened panel

with t = 0'5 in., ts 0.040 in. buckled at Nxcr 2550
* b/in, in a general instability mode (from Bushnell 31).
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W5

j;:7

II

(a) Crippling observed in a test of a riveted panel under axial
compression.

SSymmet ry-.• Symmetry

CRIPPLING DEFORMATIONS

(b) Pfedicted crippling deformations for axially compressed
riveted semisandwich flat corrugated panel.

Figure 124 Local crippling instability. This buckling mode is asso-
ciated with very short axial wavelengths.
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(I)
s0

-: j < RINGS

0 _0 10 20 30 40 50

AXIAL DISTANCE (inches)

Figure 123(b) Theoretical buckling mode for specimen photographed
in previous figure corresponding to ncr = 13 circum-
ferential waves at Ncr(BOSOR4 ) = 2800 lb/in. (from
Bushnell [ 3]).
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0 032 Skin
-, 0020 Corrugation

* . I

0.040 Skin COMPUTER MODEL
• 0.020 Corrugation"______ (b)

•" 0040 Skin
0025 Corrugation

Field

0050 Skin

0025 Corrugation 0 0.1 - A

00" ,63 Skin N,,_o 1750 •

Z • 0 032 Corrugation

_ _ -- ,o" - I-4_ ___
____________FIELD JOINT IN
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(5) ..

I&..

~-100 r
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AXIAL DISTANCE ,rnches)

S(c) (d)

* Figure 125 (a) Typical ring-stiffened shroud configuration.

(b', Actual typical field joint geometry and simplified computer
model.

"(c) 60-in.-radius x 52-in.-long panel with field joint and t = 0.020
in., ts = 0.032 in. crippled near the bottom under uniform axial
compression. N = 1620 lb/in.

cr
(d) Theoretical prebuckling behavior of 60-in.-radius x 52-in.-lung

curved panels with and without a field joint.
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20 Stiffened Cylinder Dimensions,

Boundary Conditions, Material
Properties:

0 BLCCK SS3

0 BLOCK S S'4

O..SOR SS3 h = 0.235 mm (shell wall

15 aOO S thickness)
A LINEAR SS3

R/h = 513

e./h 3.76 (stringer
. eccentricit

-A IA/bh = 0.779 (stringer area
-g 

S f Cli parameter)

553 = v = w = M = 0

SS4 = v = w = i M~ X 0

Material: Al 7075-T6

4 2
E 0.75 x 10 kg/mm

0-
04 0.6 0.8 10 L2 1.4 16

LENGTH-TO-RADIUS RATIO, L/R = 3
= stringer spacing

Figure 126 Effect of length on buckling of axially compressed
Sstringer stiffened cylindrical shell (from Weller,

Singer and Batterman 156]).
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5 0  k 60

Figure 127 Influence of elastic axial restraint k1  on the
buckling load of shell AB5 (from Singer and
Abramovich [ 33]).
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zQ

(' a) (b) (c) (d)

Figure 128 How eccentric loading of axially compressed, stringer-
"-'+'-'.stiffened cyiindrical shells is induced in tests:

S• (a) load applied through midskin

:-% (b) load applied through intermediate point
• .'•.(c) load applied through stringer tips

S(d) typical test specimen end

"'-'-(adapted from Singer and Rosen [157] and Stuhlman
O•=et al. [ 161]).
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I t =0. 163 in./ 10 psi

t 1. 687 in. 0.3I ~ ~ i: 2 =0. 22 in.
Length: 95 in. unless other-

9 wise specified !6

l 6Boundary Conditions: S2 (Table
R =198 in. 8) unless otherwise

specified.

Section AA

Figure 129 Geometry of cylindrical shell wall.
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x 0 08 \ 0.4Q
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Figure 130 Prebuckling and buckling displacements of an intern-
* ally-stiffened, simply-supported, axially-compressed

cylinder.
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LOAD EGG ENTRICITY/RADITJS Neta
Surface

Figure 131 uriti'zal loads for axially-compressed, stiffened cylinders
with .accentrically-applied load and Si (SS4) boundary condi-
tions (dotted curves for mienmbrane prebuckling theory).
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StOffeners' Centroid
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.-. Figure 132 Critical load vs. length for axially-compressed,

stiffened cylinders with S2 boundary conditions.
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- V
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Figure 133 Critical axial load for shallow toroidal shell segments
as a function of shell rise H.
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(e)

"(from Horton et al. [ 38])

Figure 134 (cont'd) Post-buckled state of axially compressed cylin-
der with very high internal pressure. Unlike examples a-d,
buckling in this case is elastic-plastic, which results in
a protruding rather than in indenting buckle. [Compare

with 134(d). Also, compare Fiiurcs 90 and 96 for
"differences between eAst-*i and elastic-plastic buckling.]

"596Ki



F- i3xTHEORETICAL COM~PRESSIVE
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Figure13 probabieslty cuas;()bedn buckling stbbliycrvessfo cooefcient

for pressurized circular cylinders; and (d) increase in bend-
ing buckling stress coefficients ACbp due to internal pressure
(from Suer et al. [165]).
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"LATERAL PRESSURE

Figure 136 Interaction curves for simply-supported (v=0) monocoque
cylindrical shells with combined axial compression and
lateral pressure (SI and S2 boundary conditions; see
Table 8) (from Almorth [ 152]).
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Figure 137(a) Interaction curves for simply-supported (u=O, v~free)
monocoque cylindrical shells with combined axial com-
pression and lateral pressure (S3 boundary conditions)
(from Almroth [ 152]).
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Figure 137(b) Interaction curves for simply-supported (u0O, v~f roe)
monocoque cylindrical shells with combined axial com-

* presssion and lateral. pressure (S3 boundary conditiops)
(from Almroth [1521).
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LO - Rigorous Prebuckling Analysis

N' - Membrane Prebuckling Analysis
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Figure 138 Interaction curves for simply-supported (u-free, v~free)
monocoque cylindrical shells with combined axial comn-
pression and lateral pressure (S4 boundary conditions)
(from Almroth [152]).
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Figure 139(b) Interaction curves for clamped monocoque cylinders
with combined axial compression and internal lateral
pressure. Rariius-to-thickness 102 < n/t 1 04 (from
Almroth [1521).
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(a) (b)

Figure 140 Post-buckled patterns for cylinders under torsion: (a) no
internal pressure;' (b) with internal pressure (from Harris
et a. [36]).

4D

I -o

f

Figure 141 Interaction curve for monocoque cylinders in torsion with
lateral er interna pressure (from Harris et al. 36]).
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(a) Details of stringer geometry.
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*(b) "Perfect" specimens. (c) Imperfect specimens (open
circles represent axisymmet-
rically imperfect specimens).

Figure 143 Comparison of test and theory for elastic buckling of
"perfect" and imperfect stringer-stiffened, clamped
cylindrical shells under combined axial compression
and external hydrostatic pressure (from Tennyson [ 1701).
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Figure 147 Effect of Z L /rt on interactive buckling behavior

for 3-layered laminated cylinder [glass/epoxy, (45 deg.,
0 deg., -45 deg.), R/t = 100] (from Booton and Tennyson

192]).
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Figure 148 Buckling mode of nonuniformly-loaded, simply-
supported, circular cylinder. Critical load =

1.8 times the load distribution shown. Cylinder
analyzed as very slender toroidal segment (from
Bushnell [ 82]).
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- Figure 149 (a) NonsymmeLfiC pressure distribution on a payload

0 shroud; (b) prebuckling bear-tvpe deflection; (c)
nonsymmetric buckling mode (ncr 13 Llrcumferential
waves) (from Bushnell [ 14]).
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Figure 150 Critical temperature distributions for one of
Anderson and Card's tests [ 204] on ring-
stiffened cylinders under combined bending and
and nonuniform heating: (a) axial distribution
at 0 = 0; (b) circumferential distribution

halfway between rings 4 and 5 (adapted from
Bushnell and Smith [ 200]).
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Figure 151 Axial stress resultant at (a) x = 2.224 and (b)
x = 16.52 in. from symmetry plane, corresponding
to cylinder and ring geometry and T(x,O) given
in Figure 150 (adapted from Bushnell and Smith

200]).
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Figure 152 Bifurcation buckling moae with %r 16 circumfer-
ential waves f or ring-stiffened cylinder under
combined bending and nonuniform heating. The pre-
dicted critical load combination is A=1.41
times that measured in a test by Anderson and
Card [ 204]. In the BOSOR analysis the prebuck- W

ling membrane stress state at circumferential
station 6 = 4Q0 was used in the stability phase
of the problem. The total prebuckling axial com-
pression Nx -n this meridian was Nx = -19.1 cos
400 + Nx (thermal at e = 40) (from Bushnell

and Smith [ 200]).
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[ 2001).
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Figure 154(a) Circumferential variation of buckling mode corres-
ponding to critical temperature rise To = 194 0 F.
Axial half-wavelength of buckles is 0.34 in. Cyl-
inder analyzed as slender torus with radius of
20,000 in. (from Bushnell and Smith [ 200]).
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Figure 154(b) Theoretical critical temperature rise vs. width
of uniformly heated strip for clamped cylinders
(from Bushnell and Smith [ 200]).
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Figure 155(b) Axial and circumferential temperature distri-
butions at buckling for one of Smith's tests
(from Bushnell and Smith [ 20.,D).
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-RT narrow axial strip: (a) prebuckling membrane

resultants along the "worst" meridian (e=0);
"(b) circumferential variation of prebuckling

.. •. state; (c) discretized model of genrator and
"three bifurcation buckling modes corresponding
"to ncr 20 circumferential waves (from Bush-
nell [ 14]).
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Figure 157 Steel containment vessel as deformed by body
forces due to 1 g vertical and 1 g horizontal
ground acceleration components.
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Figure 159 Buckling mode and load factor Xcr for steel
containment vessel under 1 g vertical and
1 g horizontal ground acceleration. The
membrane stress distribution along the meri-
dian at 0 = 0' was assumed to be axisymmetric
in the stability analysis.
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Figure 160(b) Heavy-frame sections for stiffened cylinders
(see Table 17) (from Blumenberg [ 211]).
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Figure 161 (a) Group 1 cylinder tested under uniform external

hydrostatic pressure by Blumenberg t 211]; (b)

axisymmetric prebuckling normal deflection wo and

meridional moment M1 0 ; (c) bifurcation buckling

"mode corresponding to ncr = 2 circumferential waves.

"The dots are nodal points in the discretized BOSOR

model [ 14].
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Figure 162 Local (n=4) and general (n=2) instability of four
of the hydrostatically compressed cylindrical
shells in Group 1. Buckling pressures are given
in Table 17 and cylinder and frame (ring) geo-
metries are displayed in Figure 160(a,b).
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"Figure 1.63 Some of the buckled ring-stiffened aluminum cylinders tested under

hydrostatic pressure by Boichot and Reynolds (1965). Top four spe-

cimens are without fillets and show evidence of fracturing; bottom

four specimens are of similar geometry but have fillets (from Boichot

O and Reynolds [ 212]).
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Figure 166 Comparison of test and theory for specimens 15-5XF
neglecting and including ring thickness effect
(from Bushnell [ 171]).
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* Figure 167 Predic~ed ax.isymmnetric collapse model of specimen
25-88: (a) Fnecimen geometry; (b) neglecting
ring thickness effect;' and (c) including ring
thickn~ess effect (from Bushnell 11711).
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Figure 169 BOSOR5 model of the ring-stiffened ellipsoidal shell:
(a) nodal points; (b) locations of discrete ring
attachment points and centroids (from Bushnell [ 471).
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Figure 170 Weld locations and simulation of weld thermal effect

by local cooling (from Bushnell [ 47]).
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Figure 172 Predicted bifurcation buckling modes and pressures with
and without the weld cool-down effect included in the
analysis (from Bushnell [ 471).
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Figure 175 Loading functions of "time" for BOSOR5 analysis of
Specimen BR-4.
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Figure 176 Comparison of BOSOR5 results with test and theory of Queerer

and DeAngelis for residual stresses in cold bent 6061 aluminum
specimen.
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Figure 177 Two BO'30R5 models of Specimen BR-4 showing deformed generator at
various stages in the man~ufacturing peccess and at the buckling
pressure: (a)-(e) Model in which the welding process is ignored,
(f)-(k) Model in which the welding process is included.
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Figure 182 Critical pressures corresponding to local buckling

modes from two different discretized models of ring-

stiffened cylindrical shell (from Bushnell [ 247]).
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Figure 184 Predicted buckling pressures of internally ring-stiffened
cylindrical s'.ell: (a-e) T-shaped rings treated as dis-
crete (cross sections cannot deform); (f-i) T-shaped rings
treated as flexible shell segments (cross sections are
deformable).
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Figurp 186 Buckling of ring treated as branched shell: (a) Dimen-
sions and buckling pressures; (b) prebuckling and
buckling deflections ((a) is from Bushnell [ 14]).
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F~igure 187 An externally pressurized ring-stiffened cylindrical

shell that failed by axisymxnetric sidesway of the deep

rings. (a) geometry; (b) results of a linear bifurca-

tion analysis on a branched shell model (from Bushnell
14]).
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Figure 188 Stability determinant corresponding to axisymmetric (n = 0)
bifurcation as a function of pressure. The determinant
JKl(p,n=0)l reaches a mininum at the pressure corresjo..ding
to linear bifurcation buckling [Figure 187(b)] (from
Bushnell [ 14]).
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- RING THEORY
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TEST--*
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CIRCUMFERENTIAL WAVE NUMBER, n
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-

CRITI CAL BUJCKLE MODE w

Figure 190 Lightweight ring-stiffenec shallow conical s'eli designed by NASA
for .-celerating a paylo.-d in the Martian atmosphere: (a) insidethe shell, (b) loading; (c) test specimen buckled under uniformexternai pressure; (d) comparison of test and predictions from twoanalytical models [I 11]; and (e) buckling mode from brancned shellmodel (from Leonard et al. [ 246]).
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(a) Oval Cylinder

(b) Nonuniform Loods

(C) Corrugated Panel

•- (d) Beaded Panel

J/

"(e) Discretely Stiffened General •ections
With Variable Tljickne•s

I

Figure 191 Some typical prismatic shell structure ,from
"Bushnell [ 82]).

A. 658

4%
I - .- 4 . ,,! ' ." .,." .-- %, . - . "" va• "r "-, . ."...4 J ., . . ---. : . " "": ".-. """ . --*,""""A



-" b, v
"L

A Pressure, p

SSection AA

Figure 192 Noncircular cylinder treated as portion of torus with
large radius b and length L 60b (from Bushnell t 82]).
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,'-,Figure 
193 Analysis of simply supported circular cylinder as

•'"'"portion 
of torus with radius b. Convergence studywith increasing b. Pcr = Pcra/Et, L/a - 0.6,•-""."a/t 

1 00, a = 5 .236 in . One Quarter of circum fer-•" 
ence covered (from Bushnell [82]).
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"Figure 194 Analysis of circular cylinder as torus. Nodal
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:;Figure 195 Buckling mode for nonsym- Figure 196 Pressure distribution on
metrically 'Loaded cylinder cylinder for AL/L =0.4.

with PcralEt x 105 = 2.292, AL/L 1.0 Cylinder modeied in BOSOR4 as portion
(from Bushnell [ 82]). of torus (see Figure 192) (from Bush-

nell [ 82]).
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Figure 197 Axial distribution of stress Figure 198 Circumferential distribu-
resultanes for cylinder under tions of stress resultants

band pressure load (AL/L =0.4) (from Bush- at cylinder midlength O-b = 7 inches
nell [82]). (from Bushnell [ 82]).
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"Figure 199 Simply-supported elliptic cylinder configurations.
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Figure 200 Displacement w and Figure 201 Rotation and stress r,

stress resultants at sultant distribu. ions
.-.. s = 0 for 1 psi; external pressure at midlength of elliptic cylinder wit

"on elliptic cylinder with A/B = 2, A/B 2, t 0.019.
- t = 0.019.

(all from Bushnell [ 82]
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SFigure 202 Buck'ling loads for elliptic cylinders with AIB =2
.. •;(from Bushnell [ 821).
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Figure 202 Buckling loads for elliptic cylinders with A/B 1.2
(from Bushnell [ 821).

66

00° ---- --- - -

02

0 I • ;r
0 2 4 e 8 0o

CYLINDER LENGTH, L (:nche~l

Figure 233 Buckling loads for elliptic cylinders with A/B =1.5
(from Bushnell [ 82)).
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Figure 204 Buckling modes of elliptic cyin'ders with A/B 2,
t = 0.019 in., and L = 2 4, 6, and 10 in. (from
Bushnell [82]).
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i.""Figure 205 Buckling modes of elliptic cylinders with A/B = 2,
i'.r.t = 0.029 .n., and L =2, 4, 6, and 10 .in. (from

i'.'•'•Bushnell [ 821).
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Figure 206 Buckling modes of elliptic cylinders with A/B 2,
t = 0.091 in., and L 2, 4, 6, and 10 in. (from
Bushnell [ 82]).
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Figure 207 Buckling modes for elliptic cylinder under axial
compression (from Bushnell 1 821).
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S' Figure 208 Buckling modes for axially compressed pear-shaped

cylinder (from Bushnell [ 82]).
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Figure 209 A semi-sandwich corrugated panel which, under axial

compression (r •rmal to the plane of paper), may (a)
buckle or (b) cripple. Note that in the general
instability mode (a) local deformation of the cross-
section of the complex, built-up shell wall is evident
(from Bushnell [82]).
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Figure 210 Variable thickness beaded and corrugated panel config-
urations (from Bushnell [ 82]).
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Figure 211 Buckling loads vs. length of beaded panel (from
Bushnell [ 82]).
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Figure 212 Crippling loads vs. length for a trapezoidal cor-
rugated sheet (from Bushnell [ 82 ]).
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( a) 11"it. ODttugnc Model (a) 11Irite Olfferanc. Mome
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Figure 214 Buckling modes and normalized loads of axially
compressed semisandwich corrugated riveted and

* bonded panels (from Bushnell [273]).
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Figure 215 Aluminum corrugated semisandwich bonded

panel crippled under axial compression

at a load/length of 2867 lb/in (from

Bushnell [ 3]).
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•:':,Figure 216 Crippling of axially compressed semisandwich

corrugated panel as function of degree of
•"e-•matching of displacements between skin and

S..trough of corrugation (from Bushnell [273]).
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Figure 217 Degradation of axial bending stiffness with
de-reasing axiai wavelength of buckle (from
Bushnell [ 273]).
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-. Figure 218 Degradation of torsional stiffness with decreasing axial
•....,wavelength of buckle (from Bushnell [ 273]).
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Figure 219 Cross-sectional shapes of various built-up
plate structures. (a-c) thin-walled columns,
(d) truss-ccre sandwich panel, (e-h) eccencric-
ally stiffened panels (from Tvergaard [ 275]).

O

f=.4

COLUMN LENGTH - L

Figure 220 Column buckling load for two-flange model of
given cross-section as function of column
length and flange imperfection amplitude.
This configuration was studied by van der
Neut [ 278] and Thompson and Lewis [ 279]
(from Tvergaard [ 275]).
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Figure 221 Two-flange column buckling corresponding to initial and

"reduced stiffness of the flanges. P = flange load; K

column load; Kb = bifurcation load (from van der Neut

"[ 278]).
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Figure 222 A convenient diaensionless summary of the response
of the perfect two-flsnged column (from Thompson
and Lewis [ 279]).
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-',Figure 223 Load-strain curve of imperfect simply-supported plate

•.,•,"strip under axial compression [(rj,•£) = flange compres-

* sive (load, strain) at bifurcation of the perfectly

flat simply-supported flange] (from van der Neut [ 278]).
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UFigure 224 Reduction of the stiffness of the axially compressed

plate strip due to initial waviness a~ (from van der

Neut [2783).
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•--Figure 225 Bifurcation buckling curves of columns with imperfect
* flanges (from van der Neut [ 278]).
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Figure 226 P-s curves and tangents to the load-shortening curve at the
N bifurcation load Kb of columns with various KE/KZ (from van

der Neut II2781).
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Figure 227 Strength reduction with increasing initial column axis
eccentricity, e /c (from van de-z Neut [278)).
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. Figure 228 Reduction of column strength because of eccentricity,
e /c (from van der Neut 2278]).
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Figure 229 Part of plane, integrally stiffened panel (from Tve,-aard [ 283]).

150

S, :P. Euler mode mperlectons

S~wo/:011
'C 125 PC o-.cW 3/b-001o I ,

A 0 Local mode imperfec ions

4- -4ý

• ,- - - -

0-
07 08 09 10 11 12 13 14 15 1.6

L /*°

PANEL LENGTH

"Figure 230 Maximum load PM versus length for eccentrically stiffened
panels. The curves with data points are from tests on
epoxy plastic panels (from Thompson et al. [ 287]).
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4Figure 231 Carrying capacity of imperfect panel (from Tvergaard Ii 283]).
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Figure 232 E-perimental imperfection-sensitivity plot for a panel with
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Figure 233 Dependence on load of modal deflections of eccentrically
stiffened panel. Solid curves correspond to perfect panels.
Dashed curves correspond to imperfect panels. Superscripts
and subscripts (1) refer to the Euler wide column mode and
(2) refer to the local skin buckling mode (from Tvergaard
[284]).
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*Figure 234 Experimental load-deflection curves: load versus local and
Euler mode amplitudes (from Thompson et al. [287)).
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Figure 235 The degeneration of an optimum design
because of imperfections (from Thompson
and Lewis [ 279]).
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(from Thompson and Lewis [ 279]).
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Figure 238 (a) Lattice-column structure
(b) Effect of local initial imperfections on optimum

design of lattice column

r•: (from Crawford and Hedgepeth [ 280])
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Figure 239 (a) Truss-core sandwich panel
(b) Effect of local initial imperfections on design of

truss-core sandwich panels

(from Crawford and Hedgepeth [ 280])
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Figure 241 Maximum carrying capacity A*/ 0 for a panel with a/b = 4,
e/b = 0.05 and ho/b = 0.0128, with imperfections i 2
(ho = h + As/b, that is thickness of monocoque panel ofsame weight as stiffened panel of thickness h. X0 = wide

4.. * column load of monocoque panel. ZI = Euler mode imper-
fection, Wo/ho; Z2 = local mode imperfection, wo/ho).
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Figure 242 Maximum carrying capacity X*/Xo for a panel with a/b = 8,
e/b = 0.1 and ho/b = 0.0256, with imperfections i =2

(both .rom Tvergaard [ 284]).
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stiffness S for imperfect stiffened panel
-"-"with a/b = 4, e/b =0.05, ho/b =0.0128
•""(from Tvergaard [275]).
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Fig. 244(a-c) Buckling of perfect and imperfect axially compressed stringer-
stiffened cylinders. Dashed lines correspond to neglect or
modal interaction. Stringers on the outside. (xi,x2) =(gen-
eral, local) bifurcation of perfect shell; (0.01,6.01), etc.=
(general, local) buckling modal imperfection amplitudes (from
Byskov and Hutchinson pr290]).
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.- "Figure 244 (d,e) Buckling of perfect and imperfect axially-compressed
i•[ stringer-stiffened cylinders. Dashed lines corres-

pond to neglect of modal interaction. (XlX 2) =
'• (general, local) bifurcation of perfect shell; (0.01,"0.01), etc. (general, local) buckling modal imper-

fection amplitudes (from Byskov and Nutchinson [ 290]).
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Figure 245 Directions of transverse shear stresses.
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Figure 246 Error due to omission of transverse shear effects in long
isotropic plates (all edges simply supported) (from
"Srinivas and Rao [ 294]).
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Figure 247 Error due to omission of transverse shear effects in square
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Figure 249 Initial post-buckling behavior in cases
where the bifurcation mode is unique.
Dashed curves show effect of small ini-
tial imperfections (from Tvergaard [ 7]).
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Figure 250 Imperfection sensitivity as a function of b. Although the
*i dashed curves in (b) for fie spherical and cylindrical shells
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in order to demonstrate the extreme imperfection sensitivity
of these shei"L when loaded as indicated.
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Figure 251 Initial post-buckling behavior in the plastic range
in cases where the bifurcation mode is unique. Dashed
curves show effect of small initial imperfections
(from Tvergaard [ 7]).
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Figure 252 Tensile stress-strain curve and bifurcation stresses for
• a perfect spherical shell under external pressure (from
-[- Hutchinson [ 313]).
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Figure 254 Buckling pressures for spherical shells with flat spot
imperfections. Foc both curves, omax is the maximum
support pressure of the perfect shell as predicted by
J2 flow theory (from Hutchinson [ 313]).
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Figure 259 Postbuckling equilibrium paths for perfect monocoque
cylindrical shells under axial compression. ýl is
the axisymmetric and E2, 3 are the nonsymmetric
components of deformation (from Arbocz and Babcock

*" [ 3411).

Limit

XS Point

Figure 260 Equilibrium path for an imperfect shell (from Arbocz
and Sechler [ 342]'.
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Figure 261 Postbuckling equilibrium paths for imperfect monocoque
cylindrical shells under axial comp~ression (from Arbocz
and Babcock 341]).
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Figure 262 Critical stress for buckling in an axi.symmetric periodic
mode for a shell with imperfections in the shaDe of the
axisymmetric buckling mode of a perfect cylindrical shell.

p is amplitude of imperfections as a fraction of shell
thickness.

x1 is critical stress as a function of classical buckling
stress

T2 is a circumferential wave parameter, T2= n2 (t/R) x(i/[ 3(l-V2)] 1/2)

(from Koiter [ 343])
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Figure 263 Bifurcation loads based on nonlinear prebuckling
analysis for axially compressed cylinder with
sinusoidal axisymmetric imperfections. Results
for 0 = 0.4 80 are from Ref. [ 353]; results
for 0 - $c are from Ref. [ 352]).
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Figure 264 Comparison of buckling loads for axially compressed
-0 cylinder with axisymmetric dimple imperfection.

Experimental and numerical results are from Ref.
355]; asymptotic results are from Ref. [ 124];

dashed line corresponds to Koiter's special theory
*, .- [I 343]).

(both from Tvergaard [ 7])
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Figure 265 Dependence of buckling load on imperfection magni-
tude. Note tha .; E qoL/R, where qo is given by
"q= [12(l-v2]ll (R/t) 1/2 (from Amazigo and

Budiansky [ 347]).
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. (2) imperfections for axially compressed monoco.ue

cylindrical shells with internal pressure (from
Hutchinson [ 340]).
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Figure 267 Axially compressed monocoque cylindrical shells with
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from Figures 266b and c with experimental data of
Weingarten et al. [ 364] andThielcmann[ 635] (from
Hutchinson [ 340]).
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* Figure 268 Post-buckling behavior of axially compressed cylindrical
panels of width b: (a) panel nomenclature. Panel is
"considered to be long and simply supported along straight
edges where stringers exist. (b) Equilibrium paths for
initially perfect panels. (c,d) Equilibrium paths for
panels with imperfection amplitude equal to 10% of the
shell wall thickness (from Brush and Almroth [ 4]).

714

"""" """ -'- -" "-'- -"" "-. .''2 - " '. '•"* " " • " " " " " " " " " " " " '"" " - "- """-"



2.5
V0.6

LU

L() 2.0

0.7

1.5 0.9
Wi~ U 1.0

S 1.0
0

I- 0.5

0 0.2 0.4 0.6 0.8 1.0 1.2

INTERNAL PRESSURE, =(PR /Et )[3(1-v)] 1

LU

0.4 0.

>_ 04

-0 [12(1-v 2 ] 1  6/[27r(Rh)1 2

L OU

* ~ -0.8
LU

0 0.2 0.4 0.6 0.8 1,0 1,2

INTERNAL PRESSURE, P (pR /Et)[(-)J 1

Figure 269 Axially compressed monocoque cylindrical panel, critical
strss crand initial imperfection sensitivity b vs internal

pressure p for various values of 0 at y = 0. (Note the string-
er torsional rigidity parameter
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y qo Gj/(DR) with qo = [12(1-V (R/t)

and D =Et 3/[12(1-v )j)

(from Stephens [367]).
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(from Hutchinson [ 249])
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Figure 274 Classical buckling and imperfection sensitivity of
simply supported stiffened cylinders under axial

-- 'compression (from Budiansky and Hutchinson [305]).
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Figure 275 The effect of stringer eccentricity on the buckling
and postbuckling behavior of axially stiffened
cylindrical shells which are simply supported at
the skin middle-surface and loaded in axial com-
pression (from Hutchinson and Frauenthal [ 346]).
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compression (from Hutchinson and Frauenthal [ 3461).
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Figure 287 Classical buckling and imperfection-sensitivity
of simply supported, axially stiffened cylinders
under hydrostatic pressure.
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Figure 288 Classical bucklinp, and imperfection-sensitivity
of simply supported, ring stiffened cylinders
under hydrostatic pressure.

(both from Hutchinson and Aniazigo [ 345))
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Figure 290 Pressure-modal deflection behavior, i = 2 ampli-
rude of mode that varies in both x and y coordinates.
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Figure 291 Buckling pressure of imperfect spherical shells (V = 1/3).
and C are amplitudes of imperfections in the prismatic

(x) and (x,y) modes, respectively.

(both from Hutchinson [ 393]).
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Figure 292 Generalized load-deflection curves for shallow section of
perfect sphere. w8 is the uniform normal deflection at
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Figilre 293 Buckling of externally pressurized spherical shells;
comparison between general theory and an independent
upper-bound calculation (V = 1/3) analogous to Koiter's
special theory for axially compressed shells.

"(both from Hutchinson [ 393])
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pression (from Koiter [ 390]).
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Tvergaard [ 7]).

739



-,---..--..-.- ._- -. '**L*i*."j**, .,• , --.- ',_ .-._' • •''t. '• :

Pcrit B

0.9

""1. 0.8

u 0.7

P4

CL 0.6

0.5

P 0.4 Radus a

CA. 0.3 2 [12 (1-v 01

0.2

0.1

0 I
"A .01 .02 .03

0

NORMALIZED VOLUME DISPLACED 'b'V

.0
Figure 297 Load-generalized deflection curve for externally pressur-

"ized spherical clamped cap with geometric depth parameter
12 = 200 (from Bushnell [ 401]).
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Figure 298 Dimensionless normal displacement for X = 200; prebuckled
and early post-buckled states (from Bushnell [ 401)).
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Figure 300 Geometry of a clamped spherical cap with
axisymmetric loading over part of surface.
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GENERALIZED DEFLECTION, ýWit

Figure 301 Interpretation of postbuckling slope D~rerneter a~,
defined in termp of instantaneous axisymmetric
stiffness So and postbuckling stiffness S.

(both from Fitch and Budiansky II3911)
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Figure 304 Buckling and postbuckling behavior of a clamped
spherical cap under uniform pressure (from Fitch
and Budiansky [ 391]).
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* Figure 306 Critical load Xc and postbuckling coefficient b

versus liquid filling ratio V for spherical cargo

tanks [ 112) (from Tvergaard [ 7)).

x
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Figure 307 Configuration of toroidal segments (from Hutchinson

[ 404]).
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(a) Classical buckling of toroidal segments under
"external hydrostatic pressure.
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Figure 309 Bifurcation and asymptotic post-bifurcation behavior of
toroidal segments under external hydrostatic pressure
(from Hutchinson r 404]).
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Figure 310(b,c) Asymptotic post-bifurcation behavior o- bowed-out

toroidal segments under axial tension (from

Hutchinson [ 404]).
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-~ (a) Buckling of a thin-walled spherical shell by a concentrated load
normal to its surface (from Horton et al. [38]).
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* ~(a)---Beam Before Web Buckling.,

(b)--Beam After Web Buckling.

*Figure 312 Development o~f diagonal tension field in a thin-web beam
in bending (from Horton et al. [38]).

753



49 % ULTIMATE LOAD % JLTIMATE LOAD

Fi.'gure 313 Complex stiffened shear panel and postbuckl. behavior pre-
4 dicted with the STAGS computer program. Displacements are

imposed at Points A and B wh¾:h generate pr.*.meril,ý in-plane
shearing of the six sub-panels for which contL~r plots Of
normal displacement are displayed (from Skcogh and Stern

409)).
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Figure 314 Plan view of a parabolic antenna with a pre-tensioned mrsh
to be unfurled in space. During the last phase of deploy-
ment from the tangency point (b) to the fully deploy.ed state
(a) the slack in the mesh is taken up in a way which causes
loads to be applied to the ribs in a complicated sequence
which depends on ,arious patterns of wrinkles that develop
in the mesh (from Bushnell [ 410]). -£
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"Figure 315 For the solution of this "postbuckling" problem the
deployment sequence is analyzed as if the antenna is

-0 being furled instead of unfurled. This figure exhibits
the predicted development as the rib root bending angle

' is increased from 0 to 160 (from Bushnell [ 410]).
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Figur 316 Development of wrinkles in a crude experimental model that: sirau-
lates the furling of an antenna with rigid ribs. The dark lincs
drawýn fro:- Rib I to Rib 2 remain fairly straight in the smooth
regions, as required in the analysis (from Bushnell [4101).
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fig rc 317 Load-deflection diagram and Southwell plot for axially com-
pressed, simply-supported composite plate with an unbalanced
laminate (00, 900, 00, 900) (from Ref. [ 420], Test 203b).
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Fieure 318 Torsion versus inward wall motion and corresponding
Southwell plot for orthotropic cylinder (from Banks
[ •2__ ).
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Figure 319 Circuiar cylindrical shell under external pressure

(data from Figure 16, Ref. 422).
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=L Figure 320 Circular cylindrical shell under external pressure
(data from Figure 18, Ref. 422).
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Figure 321 Imperfect monocoque cylindrical shells under axial com-

pression: growth cf selected Fourier coefficients of
the dimensionless radial displacement, w, which is given by
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"(from Arbocz and Babzock [ 341]).
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(a) Southwell plots f,: data of 3hell A7. (b) Southwell plots for data of Shell A8.
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(c) Southwell plots for data of Shell AD. (d) Line load distributions for cylinders
just prior to buckling.

Figure 322 Imperfect mono•Jque cylindricPl shells under axial compression:
(a-c) Southwell plots of growth of normal displacement harmonics
for three specimens of Arbocz and Babcock [ 341]; (d) variation
of axial line load around the circumference (from Horton and
Craig [ 414]).
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,:-",..Figure 323 Types of postbuckling behavior (from Roorda [417]).
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" Figure 324 Southwell plots corresponding to the four types of post-
buckling behavior shown in Figure 323 (from Roorda [ 417]).

F 764



Bifurcation Primary
Point Path

4 LOAD

Perfect P'late
(Secondary Plate)

Outside Surface

/L Small Imperfection

Large Imperfection STRAIN

FigurR 325 Load-strain bphavior ot axially compressed plate witi' small

and large impeifections.
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Figure 326 Aluminum ring-stiffened cylinder tested under external
--. pressure by Boichot and Reynolds at the Naval Ship Research

and Developmert Center, Maryland and flur possible analyti-
cal models for treatment with BOSOR6.
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"Figure 327 Ring-stiffened cylindrical shell specimen 20-52 modeled as
hybrid body of revolution; prebuckling deflected shape and
general nonsymmetric instability mode.
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IIN

(a) SPECIMEN 25-88 (b) MODEL I ANALYSIS (c) MODEL 2 ANALYSIS

TESTp -9450PSI PC, 88t9PSI P 10040 PSI

Cr Ce

Figure 328 Predicted axisymmetric collapse modes of ring-stiffened

cylindrical shell specimen 25-88 analyzed as a shell with
discrete rings: (a) specimen geometry; (b) neglecting
ring thickness effect; (c) including ring thickness
effect.

Symmetry plano

2 3 <

2 3

'_11.. .. .

2 pe,(Theory) 9520pSl
I D0(Test)- 94,0 psi

Figure 329 Specimen 25-88 modeled as a hybrid structure and axi-
symmetric collapse mode predicted by BOSOR6.
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a Soft Aluminum (0.125 in.)
Rigid Steel

Test Machine 2'.0 - ot~ -Cft Epoxy Potting
Head

Radius= 45 in.- Axial Strain Gages

7075-T7351 Aluminum

InsideOutside Doubler
8.18 Doubler - Notch

Steel Primacord lube

Bending Control Gages

* .2.0 1 d Soft Epoxy Potting

b Soft Aluminum (0.125 in.)

Rigid Steel Block

Hydraulic Rams Hydraulic Rams

-Figure 331 General configuration of cylindrical panel with frangible joint
* tested under uniform end shortening (from Bushnell et al. [428]).
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Figure 332 (a) A specimen after failure, and
(b) the BOSOR 6 model showing the undeformed and

deformed configurations

(from Bushnell et al. [ 428]).
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= Physical contact point

, Nodal points involved in contact
constraint conditions

/ •, , I - No tube or soft pads:

Pad.- IStr pads: No contact

A 1 -(u *9V *3W *6 (L Iv

_Soft pads: No contact
Stiffpads: w®=w )

- Soft pads: No contact

-. uStiff pads:
"I (a) Prebifurcation: - w!j

w !W(b) Bifurcation: No contact

Soft pads or stiff pads:
(a) Prebifu rcation: w! -* -w * WW

(b) Bifurcaton No contact

.'_"_ ,I Soft pads: No contact

-, - - ]Stiff pads: w*= w*

- / -- Soft pads: No contact
S4' Stiff pads.

4 •(a) Prebifurcation: w•= W*

.. p (b) Bifurcation: No contact

o (u",v*,w*Wj (u*,v wx
.-. \ •---No tube or soft pads:

I"n side Outside wtf wpas No wc
Doubler Doubler Stiff pads: No contact

Figure 335 Detail of region near notches witn prebuckling and bifurcation
contact conditions. Encircled numbers indicate segments (from
Bushnell et al. [ 428]).
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SEGMENT ® SEGMENT ( SEGMENT ® SEGMENT (D
hu E * T 0.E
-• * .O .5 • , .~ . . . *" - Nl 0 5 9 r , , • 0 8 04 .. " 60 %

i.V 3• W -,".".'M.

M.-133i Ma . C.. - 1.8 Ma -';e .5t•" Max e - .25

*---*.. . . . .*... \ . > .. .
... . .. ; " * " ""

4

- : . :• '* . . . .

V 3000 lb/in V 2000 Win

":+ . " +" + " " + + " "

a.x • 1 M0 7 . '76%x" .

AS.

9 , • •t .• :. I i V / ". . " • .. _/ - .; '." .,- \.I! > _ , - • .

V -4000bin V 3000 lb/in

- . . : . . + -.

'0...L'. • •.'

* ~ ~ ~ ~ a TUBE PRESEN~~T~M~ M.8 NOx~ TUBE M~ d

* "
Bushnell e • 428.)

V -5000lblin VU- 4000 lb/in

•,---•- ,.. -\.

S. . / _ .. . . . . V 80 lb . .. . ..n
V -5600 I/nV-40 bi

(a) TUJBE PRESENT (b) NO TUBE

Figure 339 Development of plastic regions at the roots of the notches pre-
dicted from the BOSOR6 "half" models (stiff pads assumed) (from
Bushnell et al. [ 428]).
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Figure 340 Rocket interstage configuration with frangible joint (dimensions
in inches).
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Figure 341 Structural details corresponding to the BOSOR6 model of the rocket
"intersiage (dimensions in inches),
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Figure 342 Deformation of rocket interstage under uniform axial com-

pression., The frangible joint lies within the bending
region of the cylinder-cone junction.

781



'"'" - P / 2rr

"P
--+V

" ! I -

I. I

* I -
N%

Figure 343 How the total load components S, M, and P on a shell can be
"transformed into applied loads/length.
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Figure 344 Comparison of results from linear non-axisymmetric and nonlinear

axisymmetric analyses at a load level such that the maximum axial

compression is V0 = 1000 lbs/in.
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4Ji

-Outboard

Bolt Line

Segment®

0.10 7 - 0.07

------ 0.20 0.20
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AN ORIGINAL DESIGN ME FINAL DESIGN

Figure 348 Frangible joint detail, showing (a) an original design and
(b) the final design to which the model shown in Figure 341
corresponds. This minor change raises the compressive load-
carrying capability of the rocket interstage by 10%.
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Figure 351 Axisymmetric deformation at collapse load Vcr =5:00 ibs/in.
axial compression of the rocket interstage with the steel

primacord tube included in the BOSOR6 model.
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